Menu Close

Question-225604




Question Number 225604 by mr W last updated on 04/Nov/25
Commented by mr W last updated on 04/Nov/25
An uniform cylinder with radius R  is spinned about its axis to the  angular velocity ω_0  and then placed  on an inclined plane as shown. The  coefficient of friction between the  cylinder and the incline is μ. How  many turns and in what time will  the cylinder accomplish before it   stops momentarily?
$${An}\:{uniform}\:{cylinder}\:{with}\:{radius}\:{R} \\ $$$${is}\:{spinned}\:{about}\:{its}\:{axis}\:{to}\:{the} \\ $$$${angular}\:{velocity}\:\omega_{\mathrm{0}} \:{and}\:{then}\:{placed} \\ $$$${on}\:{an}\:{inclined}\:{plane}\:{as}\:{shown}.\:{The} \\ $$$${coefficient}\:{of}\:{friction}\:{between}\:{the} \\ $$$${cylinder}\:{and}\:{the}\:{incline}\:{is}\:\mu.\:{How} \\ $$$${many}\:{turns}\:{and}\:{in}\:{what}\:{time}\:{will} \\ $$$${the}\:{cylinder}\:{accomplish}\:{before}\:{it}\: \\ $$$${stops}\:{momentarily}? \\ $$
Commented by ajfour last updated on 04/Nov/25
https://youtu.be/Xov4wK7obqg?si=3mTg8aBbBs1iBE0B https://youtu.be/7Vpoao4rYxQ?si=dexPW13XLkYO-vh4
Answered by fantastic last updated on 04/Nov/25
Commented by fantastic last updated on 04/Nov/25
N=mgcos θ  friction acting backwards.  ∴ backward force:  Mgsin θ+μMgcos θ  Mg(sin θ+μcos θ)  τ=RMg(sin θ+μcos θ)  ((MR^2 )/2)α=RMg(sin θ+μcos θ)  α=((2g(sin θ+μcos θ))/R)  ⇒θ=(ω_0 ^2 /(2α))=((ω_0 ^2 R)/(4g(sin θ+μcos θ)))  n=(θ/(2π))=((ω_0 ^2 R)/(8πg(sin θ+μcos θ)))
$${N}={mg}\mathrm{cos}\:\theta \\ $$$${friction}\:{acting}\:{backwards}. \\ $$$$\therefore\:{backward}\:{force}: \\ $$$${Mg}\mathrm{sin}\:\theta+\mu{Mg}\mathrm{cos}\:\theta \\ $$$${Mg}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right) \\ $$$$\tau={RMg}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right) \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}\alpha={RMg}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right) \\ $$$$\alpha=\frac{\mathrm{2}{g}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right)}{{R}} \\ $$$$\Rightarrow\theta=\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}\alpha}=\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right)} \\ $$$${n}=\frac{\theta}{\mathrm{2}\pi}=\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{8}\pi{g}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right)} \\ $$
Commented by ajfour last updated on 04/Nov/25
acceleration until it slips since  start a.  ma=μmgcos α−mgsin α  a=(μcos α−sin α)g  (μmgcos α)R=((mR^2 )/2)((d^2 ω/dt^2 ))  ((d^2 ω/dt^2 ))T=ω_0 −ω_(roll) =(((2μgcos α)/R))T  T=(((ω_0 −ω_(roll) )R)/(2μgcos α))  ω_(roll) R=aT  (2μgcos α+a)T=ω_0 R  T=((𝛚_0 R/g)/((3𝛍)cos 𝛂−sin 𝛂))
$${acceleration}\:{until}\:{it}\:{slips}\:{since} \\ $$$${start}\:\boldsymbol{{a}}. \\ $$$${m}\boldsymbol{{a}}=\mu{mg}\mathrm{cos}\:\alpha−{mg}\mathrm{sin}\:\alpha \\ $$$$\boldsymbol{{a}}=\left(\mu\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha\right)\boldsymbol{{g}} \\ $$$$\left(\mu{mg}\mathrm{cos}\:\alpha\right){R}=\frac{{mR}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{{d}^{\mathrm{2}} \omega}{{dt}^{\mathrm{2}} }\right) \\ $$$$\left(\frac{{d}^{\mathrm{2}} \omega}{{dt}^{\mathrm{2}} }\right){T}=\omega_{\mathrm{0}} −\omega_{{roll}} =\left(\frac{\mathrm{2}\mu{g}\mathrm{cos}\:\alpha}{{R}}\right){T} \\ $$$${T}=\frac{\left(\omega_{\mathrm{0}} −\omega_{{roll}} \right){R}}{\mathrm{2}\mu{g}\mathrm{cos}\:\alpha} \\ $$$$\omega_{{roll}} {R}=\boldsymbol{{a}}{T} \\ $$$$\left(\mathrm{2}\mu{g}\mathrm{cos}\:\alpha+\boldsymbol{{a}}\right)\boldsymbol{{T}}=\omega_{\mathrm{0}} {R} \\ $$$$\boldsymbol{{T}}=\frac{\boldsymbol{\omega}_{\mathrm{0}} \boldsymbol{{R}}/\boldsymbol{{g}}}{\left(\mathrm{3}\boldsymbol{\mu}\right)\boldsymbol{{cos}}\:\boldsymbol{\alpha}−\boldsymbol{{sin}}\:\boldsymbol{\alpha}} \\ $$
Answered by mahdipoor last updated on 04/Nov/25
by energy method :  mgΔh=(1/2)Iω^2 +(1/2)m(v_(cg) )^2   no slip ⇒ v_(cg) =Rω   , I=(1/2)mR^2   Δh=((0.5ω^2 (I+mR^2 ))/(mg))=0.75((ω^2 R^2 )/g)  d=n(2πR)=Δh/sinθ  ⇒n=0.375((ω^2 R)/(πgsinθ))    (true)  mg.sin(θ)=f_k      (fals)  ⇒f_k R=Rmgsin(θ)=Iα  α=((Rmg.sinθ)/(0.5mR^2 ))=((ω−0)/(Δt)) ⇒ Δt=((0.5ωR)/(gsinθ))   (fals)
$$\mathrm{by}\:\mathrm{energy}\:\mathrm{method}\:: \\ $$$$\mathrm{mg}\Delta\mathrm{h}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{I}\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{m}\left(\mathrm{v}_{\mathrm{cg}} \right)^{\mathrm{2}} \\ $$$$\mathrm{no}\:\mathrm{slip}\:\Rightarrow\:\mathrm{v}_{\mathrm{cg}} =\mathrm{R}\omega\:\:\:,\:\mathrm{I}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{mR}^{\mathrm{2}} \\ $$$$\Delta\mathrm{h}=\frac{\mathrm{0}.\mathrm{5}\omega^{\mathrm{2}} \left(\mathrm{I}+\mathrm{mR}^{\mathrm{2}} \right)}{\mathrm{mg}}=\mathrm{0}.\mathrm{75}\frac{\omega^{\mathrm{2}} \mathrm{R}^{\mathrm{2}} }{\mathrm{g}} \\ $$$$\mathrm{d}=\mathrm{n}\left(\mathrm{2}\pi\mathrm{R}\right)=\Delta\mathrm{h}/\mathrm{sin}\theta \\ $$$$\Rightarrow\mathrm{n}=\mathrm{0}.\mathrm{375}\frac{\omega^{\mathrm{2}} \mathrm{R}}{\pi\mathrm{gsin}\theta}\:\:\:\:\left(\mathrm{true}\right) \\ $$$$\mathrm{mg}.\mathrm{sin}\left(\theta\right)=\mathrm{f}_{\mathrm{k}} \:\:\:\:\:\left(\mathrm{fals}\right) \\ $$$$\Rightarrow\mathrm{f}_{\mathrm{k}} \mathrm{R}=\mathrm{Rmgsin}\left(\theta\right)=\mathrm{I}\alpha \\ $$$$\alpha=\frac{\mathrm{Rmg}.\mathrm{sin}\theta}{\mathrm{0}.\mathrm{5mR}^{\mathrm{2}} }=\frac{\omega−\mathrm{0}}{\Delta\mathrm{t}}\:\Rightarrow\:\Delta\mathrm{t}=\frac{\mathrm{0}.\mathrm{5}\omega\mathrm{R}}{\mathrm{gsin}\theta}\:\:\:\left(\mathrm{fals}\right) \\ $$
Commented by fantastic last updated on 04/Nov/25
am i right sir?  pls tell
$${am}\:{i}\:{right}\:{sir}? \\ $$$${pls}\:{tell} \\ $$
Commented by mahdipoor last updated on 04/Nov/25
  W_t =mgsinθ  ✓  W_n =mgcosθ  ✓  f_k =?  (no slip : just sure abuot ∣f_k ∣≤Nμ)  we have 3 general eq : (CM : center of mass)  F=ma_(CM) ⇒ { ((W_t +f_k =ma_t )),((−W_n +N=ma_n )) :}  ΣM_(CM) =I_(CM) α  (↺+)⇒ { ((f_k R=Iα)) :}  no slip :  −v_(t,CM) =ωR  ⇒ a_t =−αR=((−f_k R^2 )/I)  and :  v_(n,CM) =0  ⇒ a_n =0   so →  N = W_n =mgcosθ  W_t =−f_k (((mR^2 )/I)+1)=−3f_k   f_k =−((mgsinθ)/3) and not =μmgcosθ  or =mgsinθ  so   α=((f_k R)/I)=((−2)/3)(((gsinθ)/R))  t_(stop) =((0−ω_0 )/α)=1.5((Rω_0 )/(gsinθ))  ∴  θ_(stop) =(ω_0 /2)t_(stop) =0.75((Rω_0 ^2 )/(gsinθ))=n_(stop) (2π)  ⇒n_(stop) =((0.375)/π).((Rω_0 ^2 )/(gsinθ)) ∴  (same answer by energy method)
$$ \\ $$$$\mathrm{W}_{\mathrm{t}} =\mathrm{mgsin}\theta\:\:\checkmark \\ $$$$\mathrm{W}_{\mathrm{n}} =\mathrm{mgcos}\theta\:\:\checkmark \\ $$$$\mathrm{f}_{\mathrm{k}} =?\:\:\left(\mathrm{no}\:\mathrm{slip}\::\:\mathrm{just}\:\mathrm{sure}\:\mathrm{abuot}\:\mid\mathrm{f}_{\mathrm{k}} \mid\leqslant\mathrm{N}\mu\right) \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{3}\:\mathrm{general}\:\mathrm{eq}\::\:\left(\mathrm{CM}\::\:\mathrm{center}\:\mathrm{of}\:\mathrm{mass}\right) \\ $$$$\boldsymbol{\mathrm{F}}=\mathrm{m}\boldsymbol{\mathrm{a}}_{\mathrm{CM}} \Rightarrow\begin{cases}{\mathrm{W}_{\mathrm{t}} +\mathrm{f}_{\mathrm{k}} =\mathrm{ma}_{\mathrm{t}} }\\{−\mathrm{W}_{\mathrm{n}} +\mathrm{N}=\mathrm{ma}_{\mathrm{n}} }\end{cases} \\ $$$$\Sigma\mathrm{M}_{\mathrm{CM}} =\mathrm{I}_{\mathrm{CM}} \alpha\:\:\left(\circlearrowleft+\right)\Rightarrow\begin{cases}{\mathrm{f}_{\mathrm{k}} \mathrm{R}=\mathrm{I}\alpha}\end{cases} \\ $$$$\mathrm{no}\:\mathrm{slip}\:: \\ $$$$−\mathrm{v}_{\mathrm{t},\mathrm{CM}} =\omega\mathrm{R}\:\:\Rightarrow\:\mathrm{a}_{\mathrm{t}} =−\alpha\mathrm{R}=\frac{−\mathrm{f}_{\mathrm{k}} \mathrm{R}^{\mathrm{2}} }{\mathrm{I}} \\ $$$$\mathrm{and}\:: \\ $$$$\mathrm{v}_{\mathrm{n},\mathrm{CM}} =\mathrm{0}\:\:\Rightarrow\:\mathrm{a}_{\mathrm{n}} =\mathrm{0} \\ $$$$\:\mathrm{so}\:\rightarrow \\ $$$$\mathrm{N}\:=\:\mathrm{W}_{\mathrm{n}} =\mathrm{mgcos}\theta \\ $$$$\mathrm{W}_{\mathrm{t}} =−\mathrm{f}_{\mathrm{k}} \left(\frac{\mathrm{mR}^{\mathrm{2}} }{\mathrm{I}}+\mathrm{1}\right)=−\mathrm{3f}_{\mathrm{k}} \\ $$$$\mathrm{f}_{\mathrm{k}} =−\frac{\mathrm{mgsin}\theta}{\mathrm{3}}\:\mathrm{and}\:\mathrm{not}\:=\mu\mathrm{mgcos}\theta\:\:\mathrm{or}\:=\mathrm{mgsin}\theta \\ $$$$\mathrm{so}\:\:\:\alpha=\frac{\mathrm{f}_{\mathrm{k}} \mathrm{R}}{\mathrm{I}}=\frac{−\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{gsin}\theta}{\mathrm{R}}\right) \\ $$$$\mathrm{t}_{\mathrm{stop}} =\frac{\mathrm{0}−\omega_{\mathrm{0}} }{\alpha}=\mathrm{1}.\mathrm{5}\frac{\mathrm{R}\omega_{\mathrm{0}} }{\mathrm{gsin}\theta}\:\:\therefore \\ $$$$\theta_{\mathrm{stop}} =\frac{\omega_{\mathrm{0}} }{\mathrm{2}}\mathrm{t}_{\mathrm{stop}} =\mathrm{0}.\mathrm{75}\frac{\mathrm{R}\omega_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{gsin}\theta}=\mathrm{n}_{\mathrm{stop}} \left(\mathrm{2}\pi\right) \\ $$$$\Rightarrow\mathrm{n}_{\mathrm{stop}} =\frac{\mathrm{0}.\mathrm{375}}{\pi}.\frac{\mathrm{R}\omega_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{gsin}\theta}\:\therefore\:\:\left(\mathrm{same}\:\mathrm{answer}\:\mathrm{by}\:\mathrm{energy}\:\mathrm{method}\right) \\ $$
Commented by mahdipoor last updated on 04/Nov/25
I assumed we didnt slip ...
$$\mathrm{I}\:\mathrm{assumed}\:\mathrm{we}\:\mathrm{didnt}\:\mathrm{slip}\:… \\ $$
Commented by mr W last updated on 05/Nov/25
thanks for trying sirs!  i think the question is a little bit  more complex than it looks like.  i′ll post my attempt later.
$${thanks}\:{for}\:{trying}\:{sirs}! \\ $$$${i}\:{think}\:{the}\:{question}\:{is}\:{a}\:{little}\:{bit} \\ $$$${more}\:{complex}\:{than}\:{it}\:{looks}\:{like}. \\ $$$${i}'{ll}\:{post}\:{my}\:{attempt}\:{later}. \\ $$
Commented by fantastic last updated on 04/Nov/25
can you give us any hint  what we missed sir?  so that we can consider  that
$${can}\:{you}\:{give}\:{us}\:{any}\:{hint} \\ $$$${what}\:{we}\:{missed}\:{sir}? \\ $$$${so}\:{that}\:{we}\:{can}\:{consider} \\ $$$${that} \\ $$
Answered by mr W last updated on 05/Nov/25
at first we assume that the incline  is rough enough. otherwise,  if μ is   very small, the grip between the  cylinder and the incline is weak  and the cylinder will just “slide”   down along the incline, in spite of  its initial rotation upwards.  in this case the cylinder woulde  never stop, not even momentarily.  when μ is large enough, the cylinder  will make following motion:
$${at}\:{first}\:{we}\:{assume}\:{that}\:{the}\:{incline} \\ $$$${is}\:{rough}\:{enough}.\:{otherwise},\:\:{if}\:\mu\:{is}\: \\ $$$${very}\:{small},\:{the}\:{grip}\:{between}\:{the} \\ $$$${cylinder}\:{and}\:{the}\:{incline}\:{is}\:{weak} \\ $$$${and}\:{the}\:{cylinder}\:{will}\:{just}\:“{slide}''\: \\ $$$${down}\:{along}\:{the}\:{incline},\:{in}\:{spite}\:{of} \\ $$$${its}\:{initial}\:{rotation}\:{upwards}. \\ $$$${in}\:{this}\:{case}\:{the}\:{cylinder}\:{woulde} \\ $$$${never}\:{stop},\:{not}\:{even}\:{momentarily}. \\ $$$${when}\:\mu\:{is}\:{large}\:{enough},\:{the}\:{cylinder} \\ $$$${will}\:{make}\:{following}\:{motion}: \\ $$
Commented by mr W last updated on 06/Nov/25
phase 1: t=0 to t_1   at t=0 the cylinder has angular   velocity, but no translational  velocity, therefore it will roll and  slip simultaneously, till its   translational velocity matches  its angular velocity, i.e. v_1 =ω_1 R.   after that it will roll purely.    phase 2: t=t_1  to t_2   the cylinder rolls without slipping  till it reaches its highest position   and stops momentarily. then   the cyclinder begins to roll down  the incline backwards.    phase 1:  f=μN=μMg cos θ  Ma=f−Mg sin θ=Mg(μ cos θ−sin θ)  ⇒a=g(μ cos θ−sin θ)  a=(v_1 /t_1 ) ⇒t_1 =(v_1 /(g(μ cos θ−sin θ)))  Iα=fR  ((MR^2 )/2)α=μMg cos θR  ⇒α=((2μg cos θ)/R)  α=((w_0 −ω_1 )/t_1 ) ⇒t_1 =(((ω_0 −ω_1 )R)/(2μg cos θ))  (((ω_0 −ω_1 )R)/(2μg cos θ))=(v_1 /(g(μ cos θ−sin θ)))  with v_1 =ω_1 R  (((ω_0 −ω_1 )R)/(2μg cos θ))=((ω_1 R)/(g(μ cos θ−sin θ)))  ((ω_0 −ω_1 )/(2μ cos θ))=(ω_1 /(μ cos θ−sin θ))  ⇒ω_1 =(((μ−tan θ)ω_0 )/(3μ−tan θ))  rotation angle in phase 1:  φ_1 =((ω_0 ^2 −ω_1 ^2 )/(2α))       =((ω_0 ^2 R)/(4μg cos θ))(1+((μ−tan θ)/(3μ−tan θ)))(1−((μ−tan θ)/(3μ−tan θ)))       =(((2μ−tan θ)ω_0 ^2 R)/(g(3μ−tan θ)^2  cos θ))   t_1 =(((ω_0 −ω_1 )R)/(2μg cos θ))      =((ω_0 R)/(2μg cos θ))(1−((μ−tan θ)/(3μ−tan θ)))      =((ω_0 R)/(g(3μ−tan θ) cos θ))    phase 2:  energy conservation:  (1/2)(((MR^2 ω_1 ^2 )/2)+Mv_1 ^2 )=Mgφ_2 R sin θ  φ_2 =((3ω_1 ^2 R)/(4g sin θ))        =((3(μ−tan θ)^2 ω_0 ^2 R)/(4g(3μ−tan θ)^2  sin θ))  or:  ((MR^2 )/2)α=−fR  Ma=f−Mg sin θ  since a=αR,  MαR^2 =fR−MgR sin θ  ((MR^2 )/2)α+MαR^2 =MgR sin θ  ⇒α=((2g sin θ)/(3R))  φ_2 =(ω_1 ^2 /(2α))=((3R)/(4g sin θ)) ×(((μ−tan θ)^2 ω_0 ^2 )/((3μ−tan θ)^2 ))      =((3(μ−tan θ)^2 ω_0 ^2 R)/(4g(3μ−tan θ)^2  sin θ))   t_2 =(ω_1 /α)=(((μ−tan θ)ω_0 )/(3μ−tan θ))×((3R)/(2g sin θ))     =((3(μ−tan θ)ω_0 R)/(2g (3μ−tan θ) sin θ))    total rotation angle:  φ=φ_1 +φ_2      =(((2μ−tan θ)ω_0 ^2 R)/(g(3μ−tan θ)^2  cos θ))+((3(μ−tan θ)^2 ω_0 ^2 R)/(4g(3μ−tan θ)^2  sin θ))     =((ω_0 ^2 R)/(g(3μ−tan θ)^2 ))[((2μ−tan θ)/(cos θ))+((3(μ−tan θ)^2 )/(4 sin θ))]     =(((μ+tan θ)ω_0 ^2 R)/(4g(3μ−tan θ) sin θ))    total number of turns:  n=(φ/(2π))=(((μ+tan θ)ω_0 ^2 R)/(8πg(3μ−tan θ) sin θ))    total time:  T= t_1 + t_2      =((ω_0 R)/(g(3μ−tan θ) cos θ))+((3(μ−tan θ)ω_0 R)/(2g(3μ−tan θ) sin θ))     =((ω_0 R)/(g(3μ−tan θ)))[(1/(cos θ))+((3(μ−tan θ))/(2 sin θ))]     =((ω_0 R)/(2g sin θ))    we see such that this motion is   possible, i.e. ω_1 ≥0, we must have  μ−tan θ≥0, i.e. μ≥tan θ.
$$\underline{{phase}\:\mathrm{1}:\:{t}=\mathrm{0}\:{to}\:{t}_{\mathrm{1}} } \\ $$$${at}\:{t}=\mathrm{0}\:{the}\:{cylinder}\:{has}\:{angular}\: \\ $$$${velocity},\:{but}\:{no}\:{translational} \\ $$$${velocity},\:{therefore}\:{it}\:{will}\:{roll}\:{and} \\ $$$${slip}\:{simultaneously},\:{till}\:{its}\: \\ $$$${translational}\:{velocity}\:{matches} \\ $$$${its}\:{angular}\:{velocity},\:{i}.{e}.\:{v}_{\mathrm{1}} =\omega_{\mathrm{1}} {R}.\: \\ $$$${after}\:{that}\:{it}\:{will}\:{roll}\:{purely}. \\ $$$$ \\ $$$$\underline{{phase}\:\mathrm{2}:\:{t}={t}_{\mathrm{1}} \:{to}\:{t}_{\mathrm{2}} } \\ $$$${the}\:{cylinder}\:{rolls}\:{without}\:{slipping} \\ $$$${till}\:{it}\:{reaches}\:{its}\:{highest}\:{position}\: \\ $$$${and}\:{stops}\:{momentarily}.\:{then}\: \\ $$$${the}\:{cyclinder}\:{begins}\:{to}\:{roll}\:{down} \\ $$$${the}\:{incline}\:{backwards}. \\ $$$$ \\ $$$$\boldsymbol{{phase}}\:\mathrm{1}: \\ $$$${f}=\mu{N}=\mu{Mg}\:\mathrm{cos}\:\theta \\ $$$${Ma}={f}−{Mg}\:\mathrm{sin}\:\theta={Mg}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow{a}={g}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right) \\ $$$${a}=\frac{{v}_{\mathrm{1}} }{{t}_{\mathrm{1}} }\:\Rightarrow{t}_{\mathrm{1}} =\frac{{v}_{\mathrm{1}} }{{g}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)} \\ $$$${I}\alpha={fR} \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}\alpha=\mu{Mg}\:\mathrm{cos}\:\theta{R} \\ $$$$\Rightarrow\alpha=\frac{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta}{{R}} \\ $$$$\alpha=\frac{{w}_{\mathrm{0}} −\omega_{\mathrm{1}} }{{t}_{\mathrm{1}} }\:\Rightarrow{t}_{\mathrm{1}} =\frac{\left(\omega_{\mathrm{0}} −\omega_{\mathrm{1}} \right){R}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta} \\ $$$$\frac{\left(\omega_{\mathrm{0}} −\omega_{\mathrm{1}} \right){R}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta}=\frac{{v}_{\mathrm{1}} }{{g}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)} \\ $$$${with}\:{v}_{\mathrm{1}} =\omega_{\mathrm{1}} {R} \\ $$$$\frac{\left(\omega_{\mathrm{0}} −\omega_{\mathrm{1}} \right){R}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta}=\frac{\omega_{\mathrm{1}} {R}}{{g}\left(\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)} \\ $$$$\frac{\omega_{\mathrm{0}} −\omega_{\mathrm{1}} }{\mathrm{2}\mu\:\mathrm{cos}\:\theta}=\frac{\omega_{\mathrm{1}} }{\mu\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta} \\ $$$$\Rightarrow\omega_{\mathrm{1}} =\frac{\left(\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} }{\mathrm{3}\mu−\mathrm{tan}\:\theta} \\ $$$${rotation}\:{angle}\:{in}\:{phase}\:\mathrm{1}: \\ $$$$\phi_{\mathrm{1}} =\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} −\omega_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}\alpha} \\ $$$$\:\:\:\:\:=\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}\mu{g}\:\mathrm{cos}\:\theta}\left(\mathrm{1}+\frac{\mu−\mathrm{tan}\:\theta}{\mathrm{3}\mu−\mathrm{tan}\:\theta}\right)\left(\mathrm{1}−\frac{\mu−\mathrm{tan}\:\theta}{\mathrm{3}\mu−\mathrm{tan}\:\theta}\right) \\ $$$$\:\:\:\:\:=\frac{\left(\mathrm{2}\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{cos}\:\theta} \\ $$$$\:{t}_{\mathrm{1}} =\frac{\left(\omega_{\mathrm{0}} −\omega_{\mathrm{1}} \right){R}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta} \\ $$$$\:\:\:\:=\frac{\omega_{\mathrm{0}} {R}}{\mathrm{2}\mu{g}\:\mathrm{cos}\:\theta}\left(\mathrm{1}−\frac{\mu−\mathrm{tan}\:\theta}{\mathrm{3}\mu−\mathrm{tan}\:\theta}\right) \\ $$$$\:\:\:\:=\frac{\omega_{\mathrm{0}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{cos}\:\theta} \\ $$$$ \\ $$$$\boldsymbol{{phase}}\:\mathrm{2}: \\ $$$${energy}\:{conservation}: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{MR}^{\mathrm{2}} \omega_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}}+{Mv}_{\mathrm{1}} ^{\mathrm{2}} \right)={Mg}\phi_{\mathrm{2}} {R}\:\mathrm{sin}\:\theta \\ $$$$\phi_{\mathrm{2}} =\frac{\mathrm{3}\omega_{\mathrm{1}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\:\mathrm{sin}\:\theta} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta} \\ $$$${or}: \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}\alpha=−{fR} \\ $$$${Ma}={f}−{Mg}\:\mathrm{sin}\:\theta \\ $$$${since}\:{a}=\alpha{R}, \\ $$$${M}\alpha{R}^{\mathrm{2}} ={fR}−{MgR}\:\mathrm{sin}\:\theta \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}\alpha+{M}\alpha{R}^{\mathrm{2}} ={MgR}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\alpha=\frac{\mathrm{2}{g}\:\mathrm{sin}\:\theta}{\mathrm{3}{R}} \\ $$$$\phi_{\mathrm{2}} =\frac{\omega_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}\alpha}=\frac{\mathrm{3}{R}}{\mathrm{4}{g}\:\mathrm{sin}\:\theta}\:×\frac{\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega_{\mathrm{0}} ^{\mathrm{2}} }{\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:=\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta} \\ $$$$\:{t}_{\mathrm{2}} =\frac{\omega_{\mathrm{1}} }{\alpha}=\frac{\left(\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} }{\mathrm{3}\mu−\mathrm{tan}\:\theta}×\frac{\mathrm{3}{R}}{\mathrm{2}{g}\:\mathrm{sin}\:\theta} \\ $$$$\:\:\:=\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} {R}}{\mathrm{2}{g}\:\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{sin}\:\theta} \\ $$$$ \\ $$$${total}\:{rotation}\:{angle}: \\ $$$$\phi=\phi_{\mathrm{1}} +\phi_{\mathrm{2}} \\ $$$$\:\:\:=\frac{\left(\mathrm{2}\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{cos}\:\theta}+\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} \:\mathrm{sin}\:\theta} \\ $$$$\:\:\:=\frac{\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} }\left[\frac{\mathrm{2}\mu−\mathrm{tan}\:\theta}{\mathrm{cos}\:\theta}+\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)^{\mathrm{2}} }{\mathrm{4}\:\mathrm{sin}\:\theta}\right] \\ $$$$\:\:\:=\frac{\left(\mu+\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{4}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{sin}\:\theta} \\ $$$$ \\ $$$${total}\:{number}\:{of}\:{turns}: \\ $$$${n}=\frac{\phi}{\mathrm{2}\pi}=\frac{\left(\mu+\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} ^{\mathrm{2}} {R}}{\mathrm{8}\pi{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{sin}\:\theta} \\ $$$$ \\ $$$${total}\:{time}: \\ $$$${T}=\:{t}_{\mathrm{1}} +\:{t}_{\mathrm{2}} \\ $$$$\:\:\:=\frac{\omega_{\mathrm{0}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{cos}\:\theta}+\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)\omega_{\mathrm{0}} {R}}{\mathrm{2}{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)\:\mathrm{sin}\:\theta} \\ $$$$\:\:\:=\frac{\omega_{\mathrm{0}} {R}}{{g}\left(\mathrm{3}\mu−\mathrm{tan}\:\theta\right)}\left[\frac{\mathrm{1}}{\mathrm{cos}\:\theta}+\frac{\mathrm{3}\left(\mu−\mathrm{tan}\:\theta\right)}{\mathrm{2}\:\mathrm{sin}\:\theta}\right] \\ $$$$\:\:\:=\frac{\omega_{\mathrm{0}} {R}}{\mathrm{2}{g}\:\mathrm{sin}\:\theta} \\ $$$$ \\ $$$${we}\:{see}\:{such}\:{that}\:{this}\:{motion}\:{is}\: \\ $$$${possible},\:{i}.{e}.\:\omega_{\mathrm{1}} \geqslant\mathrm{0},\:{we}\:{must}\:{have} \\ $$$$\mu−\mathrm{tan}\:\theta\geqslant\mathrm{0},\:{i}.{e}.\:\mu\geqslant\mathrm{tan}\:\theta. \\ $$
Commented by mr W last updated on 05/Nov/25
Commented by mr W last updated on 05/Nov/25
it′s interesting to note that  T=((ω_0 R)/(2g sin θ)), which is independent  from μ and is equal to the time  which the same cylinder takes   when it rolls upwards the incline  with an initial angular velocity ω_0   and without slipping.
$${it}'{s}\:{interesting}\:{to}\:{note}\:{that} \\ $$$${T}=\frac{\omega_{\mathrm{0}} {R}}{\mathrm{2}{g}\:\mathrm{sin}\:\theta},\:{which}\:{is}\:{independent} \\ $$$${from}\:\mu\:{and}\:{is}\:{equal}\:{to}\:{the}\:{time} \\ $$$${which}\:{the}\:{same}\:{cylinder}\:{takes}\: \\ $$$${when}\:{it}\:{rolls}\:{upwards}\:{the}\:{incline} \\ $$$${with}\:{an}\:{initial}\:{angular}\:{velocity}\:\omega_{\mathrm{0}} \\ $$$${and}\:{without}\:{slipping}. \\ $$
Commented by ajfour last updated on 05/Nov/25
superb sir! Fine result. I had not  expected such simplification!
$${superb}\:{sir}!\:{Fine}\:{result}.\:{I}\:{had}\:{not} \\ $$$${expected}\:{such}\:{simplification}! \\ $$
Commented by ajfour last updated on 05/Nov/25
����
Commented by mr W last updated on 05/Nov/25
thanks for reviewing sir!
$${thanks}\:{for}\:{reviewing}\:{sir}! \\ $$
Commented by fantastic last updated on 05/Nov/25
this is very interesting
$${this}\:{is}\:{very}\:{interesting} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *