Question Number 225661 by mr W last updated on 05/Nov/25

Commented by mr W last updated on 05/Nov/25

Commented by fantastic last updated on 05/Nov/25

$${i}\:{have}\:{a}\:{feeling}\:{that} \\ $$$${the}\:{block}\:{M}\:{will}\:{acheive} \\ $$$${its}\:{max}\:{v}\:{at}\:\mathrm{2}{nd}\:{phase} \\ $$$${when}\:{the}\:{pellete}\:{will} \\ $$$${start}\:{to}\:{go}\:{left}\:{after} \\ $$$${going}\:{to}\:{the}\:{right} \\ $$$${What}\:{do}\:{you}\:{think}\:{sir} \\ $$
Commented by mr W last updated on 06/Nov/25

$${maybe}.\:{what}'{s}\:{your}\:{exact}\:{answer}? \\ $$
Commented by mahdipoor last updated on 06/Nov/25

$$\mathrm{my}\:\mathrm{final}\:\mathrm{ode}\:\mathrm{eq}\:\mathrm{is}\::\:\:\:\left(\mathrm{A}=\overset{.} {\mathrm{v}}_{\mathrm{M}} \right) \\ $$$$\mathrm{A}\left(\frac{\mathrm{M}+\mathrm{m}}{\mathrm{mr}}\right)+\omega^{\mathrm{2}} \mathrm{cos}\theta+\alpha\mathrm{sin}\theta=\mathrm{0} \\ $$$$\mathrm{A}\left(\frac{\mathrm{M}}{\mathrm{mr}}\right)\mathrm{tan}\theta+\frac{\mathrm{g}}{\mathrm{r}}+\omega^{\mathrm{2}} \mathrm{sin}\theta−\alpha\mathrm{cos}\theta=\mathrm{0} \\ $$$$\omega=\overset{.} {\theta}\:\:\:,\:\:\:\alpha=\overset{..} {\theta} \\ $$$$\mathrm{this}\:\mathrm{eq}\:\mathrm{must}\:\mathrm{solve}\:\mathrm{from}\:\begin{cases}{\theta=\mathrm{90}\:,\:\omega^{\mathrm{2}} =\frac{\mathrm{2g}}{\mathrm{r}}\:\:,\:\:\alpha=\mathrm{0}}\\{\mathrm{v}_{\mathrm{M}} =\mathrm{0}\:\:,\:\mathrm{A}=\mathrm{0}}\end{cases} \\ $$$$\mathrm{to}\:\theta=\mathrm{90}\:\:\mathrm{again}\:.\:\mathrm{v}_{\mathrm{M}} \:\mathrm{at}\:\mathrm{this}\:\mathrm{is}\:\mathrm{v}_{\mathrm{max}} \\ $$
Commented by mr W last updated on 07/Nov/25

$${thanks}\:{sir}! \\ $$$${to}\:{exactly}\:{solve}\:{this}\:{problem}\:{is}\:{not} \\ $$$${possible},\:{due}\:{to}\:{this}\:{d}.{e}.\:{as}\:{you}\: \\ $$$${showed},\:{which}\:{can}\:{not}\:{be}\:{solved}. \\ $$$${but}\:{fortunately}\:{the}\:{question}\:{only}\: \\ $$$${requests}\:{the}\:{maximum}\:{velocity}.\: \\ $$$${then}\:{we}\:{don}'{t}\:{need}\:{to}\:{solve}\:{this}\: \\ $$$${hard}\:{d}.{e}.\:{that}\:{means}\:{we}\:{can}\:{find} \\ $$$${out}\:{the}\:{maximum}\:{velocity},\:{but}\:{we} \\ $$$${can}\:{not}\:{find}\:{out}\:{at}\:{what}\:{time}\:{and} \\ $$$${at}\:{what}\:{position}\:{of}\:{the}\:{block}\:{this} \\ $$$${happens}. \\ $$
Answered by mr W last updated on 07/Nov/25

$${from}\:{t}=\mathrm{0}\:{to}\:{t}_{\mathrm{1}} \:{the}\:{block}\:{M}\:{doesn}'{t} \\ $$$${move},\:{because}\:{a}\:{motion}\:{of}\:{it}\:{to}\:{the} \\ $$$${left}\:{is}\:{prevented}\:{by}\:{the}\:{wall}.\:{when} \\ $$$${the}\:{pellet}\:{reaches}\:{the}\:{bottom}\:{of}\:{the} \\ $$$${cavity},\:{its}\:{normal}\:{reaction}\:{force} \\ $$$${will}\:{push}\:{the}\:{block}\:{to}\:{the}\:{right}.\:{upon} \\ $$$${now}\:{the}\:{block}\:{can}\:{start}\:{to}\:{move}. \\ $$$$ \\ $$$${at}\:{t}={t}_{\mathrm{1}} : \\ $$$${velocity}\:{of}\:{pellet}:\:{v}_{\mathrm{0}} =\sqrt{\mathrm{2}{gr}} \\ $$$${velocity}\:{of}\:{block}:\:\mathrm{0} \\ $$$${upon}\:{now}\:{the}\:{block}\:{starts}\:{to}\:{move}\:{to} \\ $$$${the}\:{right},\:{away}\:{from}\:{the}\:{wall}. \\ $$$$ \\ $$$${at}\:{some}\:{time}\:{t}={t}_{\mathrm{2}} : \\ $$$${the}\:{block}\:{has}\:{maximum}\:{velocity}\:{V}_{{max}} , \\ $$$${when}\:{the}\:{pellet}\:{is}\:{at}\:{the}\:{lowest} \\ $$$${position}. \\ $$$${MV}_{{max}} −{mv}={mv}_{\mathrm{0}} \:\Rightarrow{v}=\frac{{MV}_{{max}} }{{m}}−{v}_{\mathrm{0}} \\ $$$$\frac{{MV}_{{max}} ^{\mathrm{2}} }{\mathrm{2}}+\frac{{mv}^{\mathrm{2}} }{\mathrm{2}}=\frac{{mv}_{\mathrm{0}} ^{\mathrm{2}} }{\mathrm{2}} \\ $$$${MV}_{{max}} ^{\mathrm{2}} +{m}\left(\frac{{MV}_{{max}} }{{m}}−{v}_{\mathrm{0}} \right)^{\mathrm{2}} ={mv}_{\mathrm{0}} ^{\mathrm{2}} \\ $$$$\Rightarrow{V}_{{max}} =\frac{\mathrm{2}\sqrt{\mathrm{2}{gr}}}{\mathrm{1}+\frac{{M}}{{m}}}\:\:\checkmark \\ $$$$\Rightarrow{v}=\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}+\frac{{M}}{{m}}}\right)\sqrt{\mathrm{2}{gr}} \\ $$
Commented by mr W last updated on 07/Nov/25

Commented by mr W last updated on 07/Nov/25

$${at}\:{some}\:{time}\:{t}={t}_{\mathrm{3}} ,\:{the}\:{pellet}\:{is}\:{at} \\ $$$${its}\:{highest}\:{position},\:{it}\:{has}\:{the}\:{same} \\ $$$${velocity}\:{as}\:{the}\:{block}:\:{V}_{{m}} \\ $$$$\left({M}+{m}\right){V}_{{m}} ={mv}_{\mathrm{0}} \\ $$$$\Rightarrow{V}_{{m}} =\frac{{v}_{\mathrm{0}} }{\mathrm{1}+\frac{{M}}{{m}}}=\frac{\sqrt{\mathrm{2}{gr}}}{\mathrm{1}+\frac{{M}}{{m}}}=\frac{{V}_{{max}} }{\mathrm{2}} \\ $$$$\frac{\left({M}+{m}\right){V}_{{m}} ^{\mathrm{2}} }{\mathrm{2}}={mg}\left({r}−{h}\right) \\ $$$$\Rightarrow{h}=\frac{{r}}{\mathrm{1}+\frac{{m}}{{M}}}<{r} \\ $$
Commented by mr W last updated on 07/Nov/25

Commented by mr W last updated on 07/Nov/25

$${this}\:{is}\:{how}\:{the}\:{velocity}\:{of}\:{the} \\ $$$${objects}\:{changes}: \\ $$
Commented by mr W last updated on 07/Nov/25

Commented by fantastic last updated on 07/Nov/25

$${good}\:{methos}\:{sir} \\ $$