Question Number 225810 by hardmath last updated on 12/Nov/25

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\mathrm{triangle}: \\ $$$$\frac{\mathrm{4R}}{\mathrm{r}}\:\geqslant\:\frac{\mathrm{w}_{\boldsymbol{\mathrm{a}}} \:\mathrm{w}_{\boldsymbol{\mathrm{b}}} \:\mathrm{w}_{\boldsymbol{\mathrm{c}}} }{\mathrm{h}_{\boldsymbol{\mathrm{a}}} \:\mathrm{h}_{\boldsymbol{\mathrm{b}}} \:\mathrm{h}_{\boldsymbol{\mathrm{c}}} }\:\centerdot\:\left(\frac{\mathrm{1}}{\mathrm{a}}\:+\:\frac{\mathrm{1}}{\mathrm{b}}\right)\centerdot\left(\sqrt{\mathrm{a}}\:+\:\sqrt{\mathrm{b}}\right)^{\mathrm{2}} \\ $$