Menu Close

The-coefficient-of-x-2-in-the-expansion-of-1-2-p-x-5-1-px-6-is-70-Find-the-possible-values-of-the-constant-p-




Question Number 226053 by Linton last updated on 18/Nov/25
The coefficient of x^2  in the expansion  of (1+ (2/p)x)^5  + (1+px)^6  is 70.  Find the possible values of the  constant p.
$${The}\:{coefficient}\:{of}\:{x}^{\mathrm{2}} \:{in}\:{the}\:{expansion} \\ $$$${of}\:\left(\mathrm{1}+\:\left(\mathrm{2}/{p}\right){x}\right)^{\mathrm{5}} \:+\:\left(\mathrm{1}+{px}\right)^{\mathrm{6}} \:{is}\:\mathrm{70}. \\ $$$${Find}\:{the}\:{possible}\:{values}\:{of}\:{the} \\ $$$${constant}\:{p}. \\ $$
Answered by mr W last updated on 18/Nov/25
coef. of x^2  is  C_2 ^5 ((2/p))^2 +C_2 ^6 p^2 =70  ((40)/p^2 )+15p^2 =70  3p^4 −14p^2 +8=0  (p^2 −4)(3p^2 −2)=0  p^2 =4, 2  ⇒p=±2, ±(√2)
$${coef}.\:{of}\:{x}^{\mathrm{2}} \:{is} \\ $$$${C}_{\mathrm{2}} ^{\mathrm{5}} \left(\frac{\mathrm{2}}{{p}}\right)^{\mathrm{2}} +{C}_{\mathrm{2}} ^{\mathrm{6}} {p}^{\mathrm{2}} =\mathrm{70} \\ $$$$\frac{\mathrm{40}}{{p}^{\mathrm{2}} }+\mathrm{15}{p}^{\mathrm{2}} =\mathrm{70} \\ $$$$\mathrm{3}{p}^{\mathrm{4}} −\mathrm{14}{p}^{\mathrm{2}} +\mathrm{8}=\mathrm{0} \\ $$$$\left({p}^{\mathrm{2}} −\mathrm{4}\right)\left(\mathrm{3}{p}^{\mathrm{2}} −\mathrm{2}\right)=\mathrm{0} \\ $$$${p}^{\mathrm{2}} =\mathrm{4},\:\mathrm{2} \\ $$$$\Rightarrow{p}=\pm\mathrm{2},\:\pm\sqrt{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *