Menu Close

6-x-6-y-42-x-y-3-Find-x-and-y-




Question Number 226144 by Linton last updated on 20/Nov/25
6^x  + 6^y  = 42  x + y =3  Find x and y ?
$$\mathrm{6}^{{x}} \:+\:\mathrm{6}^{{y}} \:=\:\mathrm{42} \\ $$$${x}\:+\:{y}\:=\mathrm{3} \\ $$$${Find}\:{x}\:{and}\:{y}\:? \\ $$
Commented by mr W last updated on 20/Nov/25
not clear?  (1, 2) or (2, 1)
$${not}\:{clear}? \\ $$$$\left(\mathrm{1},\:\mathrm{2}\right)\:{or}\:\left(\mathrm{2},\:\mathrm{1}\right) \\ $$
Answered by ibrahimmatematic last updated on 20/Nov/25
SOLUTION:Abdullayev.I  x=3−y  6^(3−y) +6^y =42  6^3 +6^(2y) =42∙6^y   6^y =t  t^2 −42t+216=0  t=6;36  6^y =6 ⇒y=1;x=2  6^y =36 ⇒y=2;x=1
$${SOLUTION}:{Abdullayev}.{I} \\ $$$${x}=\mathrm{3}−{y} \\ $$$$\mathrm{6}^{\mathrm{3}−{y}} +\mathrm{6}^{{y}} =\mathrm{42} \\ $$$$\mathrm{6}^{\mathrm{3}} +\mathrm{6}^{\mathrm{2}{y}} =\mathrm{42}\centerdot\mathrm{6}^{{y}} \\ $$$$\mathrm{6}^{{y}} ={t} \\ $$$${t}^{\mathrm{2}} −\mathrm{42}{t}+\mathrm{216}=\mathrm{0} \\ $$$${t}=\mathrm{6};\mathrm{36} \\ $$$$\mathrm{6}^{{y}} =\mathrm{6}\:\Rightarrow{y}=\mathrm{1};{x}=\mathrm{2} \\ $$$$\mathrm{6}^{{y}} =\mathrm{36}\:\Rightarrow{y}=\mathrm{2};{x}=\mathrm{1} \\ $$
Answered by Kademi last updated on 20/Nov/25
    y = 3−x   6^x +6^y  = 42    6^x +6^(3−x)  = 42   6^x −42+(6^3 /6^x ) = 0   (6^x )^2 −42(6^x )+6^3  = 0   6^x  = ((42±(√(42^2 −4×6^3 )))/2) = 21±15  →   { ((1) 36)),((2) 6)) :}   1) 6^x  = 36  ⇒  x_1  = 2  ⇒  y_1  = 1   2) 6^x  = 6  ⇒  x_2  = 1  ⇒  y_2  = 2    determinant (((x_1 ∧y_2  = 2),(x_2 ∧y_1  = 1)))
$$\: \\ $$$$\:{y}\:=\:\mathrm{3}−{x} \\ $$$$\:\mathrm{6}^{{x}} +\mathrm{6}^{{y}} \:=\:\mathrm{42}\: \\ $$$$\:\mathrm{6}^{{x}} +\mathrm{6}^{\mathrm{3}−{x}} \:=\:\mathrm{42} \\ $$$$\:\mathrm{6}^{{x}} −\mathrm{42}+\frac{\mathrm{6}^{\mathrm{3}} }{\mathrm{6}^{{x}} }\:=\:\mathrm{0} \\ $$$$\:\left(\mathrm{6}^{{x}} \right)^{\mathrm{2}} −\mathrm{42}\left(\mathrm{6}^{{x}} \right)+\mathrm{6}^{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\:\mathrm{6}^{{x}} \:=\:\frac{\mathrm{42}\pm\sqrt{\mathrm{42}^{\mathrm{2}} −\mathrm{4}×\mathrm{6}^{\mathrm{3}} }}{\mathrm{2}}\:=\:\mathrm{21}\pm\mathrm{15}\:\:\rightarrow\:\:\begin{cases}{\left.\mathrm{1}\right)\:\mathrm{36}}\\{\left.\mathrm{2}\right)\:\mathrm{6}}\end{cases} \\ $$$$\left.\:\mathrm{1}\right)\:\mathrm{6}^{{x}} \:=\:\mathrm{36}\:\:\Rightarrow\:\:{x}_{\mathrm{1}} \:=\:\mathrm{2}\:\:\Rightarrow\:\:{y}_{\mathrm{1}} \:=\:\mathrm{1} \\ $$$$\left.\:\mathrm{2}\right)\:\mathrm{6}^{{x}} \:=\:\mathrm{6}\:\:\Rightarrow\:\:{x}_{\mathrm{2}} \:=\:\mathrm{1}\:\:\Rightarrow\:\:{y}_{\mathrm{2}} \:=\:\mathrm{2} \\ $$$$\:\begin{array}{|c|}{{x}_{\mathrm{1}} \wedge{y}_{\mathrm{2}} \:=\:\mathrm{2}}&\hline{{x}_{\mathrm{2}} \wedge{y}_{\mathrm{1}} \:=\:\mathrm{1}}\\\hline\end{array} \\ $$$$\: \\ $$$$\: \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *