Menu Close

Question-226124




Question Number 226124 by ajfour last updated on 20/Nov/25
Commented by ajfour last updated on 20/Nov/25
If s=1, find R.  or find R/s.
$${If}\:{s}=\mathrm{1},\:{find}\:{R}. \\ $$$${or}\:{find}\:{R}/{s}. \\ $$
Answered by fantastic2 last updated on 22/Nov/25
a+b=S  R(√2)+R+b=S(√2)  (R+a)^2 =R^2 +(S−R)^2     ⇒a=1−b  putting in eq 3  (R+1−b)^2 =R^2 +(1−R)^2 ..4  We got   R((√2)+1)+b=(√2)⇒b=(√2)−R((√2)+1)  &  R^2 +1+b^2 +2R−2b−2Rb=R^2 +1+R^2 −2R  ⇒b^2 +4R−2b(1+R)=R^2   ⇒b^2 −2b(1+R)=R^2 −4R  ⇒((√2)−R((√2)+1))^2 −2((√2)−R((√2)+1))(1+R)=R(R−4)  ⇒((√2)−R(√2)−R−R−1)^2 =R(R−4)+(1+R)^2   ⇒(((√2)−1)−R(√2)(1+(√2))^2 =2R^2 −2R+1  wait i think im making it complex..  Real solution  R=((+(√2)(√(11−2(√2)))−2(√2)−(√(11−2(√2)))+3)/4)  ≈0.3389105593
$${a}+{b}={S} \\ $$$${R}\sqrt{\mathrm{2}}+{R}+{b}={S}\sqrt{\mathrm{2}} \\ $$$$\left({R}+{a}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} +\left({S}−{R}\right)^{\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow{a}=\mathrm{1}−{b} \\ $$$${putting}\:{in}\:{eq}\:\mathrm{3} \\ $$$$\left({R}+\mathrm{1}−{b}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} +\left(\mathrm{1}−{R}\right)^{\mathrm{2}} ..\mathrm{4} \\ $$$${We}\:{got}\: \\ $$$${R}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)+{b}=\sqrt{\mathrm{2}}\Rightarrow{b}=\sqrt{\mathrm{2}}−{R}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$$$\& \\ $$$${R}^{\mathrm{2}} +\mathrm{1}+{b}^{\mathrm{2}} +\mathrm{2}{R}−\mathrm{2}{b}−\mathrm{2}{Rb}={R}^{\mathrm{2}} +\mathrm{1}+{R}^{\mathrm{2}} −\mathrm{2}{R} \\ $$$$\Rightarrow{b}^{\mathrm{2}} +\mathrm{4}{R}−\mathrm{2}{b}\left(\mathrm{1}+{R}\right)={R}^{\mathrm{2}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} −\mathrm{2}{b}\left(\mathrm{1}+{R}\right)={R}^{\mathrm{2}} −\mathrm{4}{R} \\ $$$$\Rightarrow\left(\sqrt{\mathrm{2}}−{R}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\right)^{\mathrm{2}} −\mathrm{2}\left(\sqrt{\mathrm{2}}−{R}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\right)\left(\mathrm{1}+{R}\right)={R}\left({R}−\mathrm{4}\right) \\ $$$$\Rightarrow\left(\sqrt{\mathrm{2}}−{R}\sqrt{\mathrm{2}}−{R}−{R}−\mathrm{1}\right)^{\mathrm{2}} ={R}\left({R}−\mathrm{4}\right)+\left(\mathrm{1}+{R}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left(\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)−{R}\sqrt{\mathrm{2}}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{2}{R}^{\mathrm{2}} −\mathrm{2}{R}+\mathrm{1}\right. \\ $$$${wait}\:{i}\:{think}\:{im}\:{making}\:{it}\:{complex}.. \\ $$$${Real}\:{solution} \\ $$$${R}=\frac{+\sqrt{\mathrm{2}}\sqrt{\mathrm{11}−\mathrm{2}\sqrt{\mathrm{2}}}−\mathrm{2}\sqrt{\mathrm{2}}−\sqrt{\mathrm{11}−\mathrm{2}\sqrt{\mathrm{2}}}+\mathrm{3}}{\mathrm{4}} \\ $$$$\approx\mathrm{0}.\mathrm{3389105593} \\ $$
Commented by ajfour last updated on 20/Nov/25
yes, and the answers are beautiful too.
$${yes},\:{and}\:{the}\:{answers}\:{are}\:{beautiful}\:{too}. \\ $$
Answered by ajfour last updated on 20/Nov/25
Answered by TonyCWX last updated on 22/Nov/25
S=a+b  b=S−a    R(√2)+R+b=(a+b)(√2)  R((√2)+1)=a(√2)+((√2)−1)b  R=(2−(√2))a+(3−2(√2))(S−a)  R=(2−(√2))a+(3−2(√2))S−(3−2(√2))a  R=((√2)−1)a+(3−2(√2))S  a=((√2)+1)R−((√2)−1)S ... E_1     R^2 +(S−R)^2 =(a+R)^2   a=(√(S^2 −2SR+2R^2 ))−R ... E_2     Equalise E_1  and E_2   (√(S^2 −2SR+2R^2 ))−R=((√2)+1)R−((√2)−1)S  (√(S^2 −2SR+2R^2 ))=((√2)+2)R−((√2)−1)S  S^2 −2SR+2R^2 =(4(√2)+6)R^2 −2(√2)SR+(3−2(√2))S^2   (4(√2)+4)R^2 +(2−2(√2))SR+(2−2(√2))S^2 =0  R=(((2(√2)−2)S±(√((12−8(√2))S^2 −(−32)S^2 )))/(8(√2)+8))  R=(((2(√2)−2)S±S(√((44−8(√2)))))/(8(√2)+8))  R=((S[(√2)−1+(√(11−2(√2)))])/(4(√2)+4))  S=1 ⇒ R=(((√2)−1+(√(11−2(√2))))/(4(√2)+4)) ≈ 0.3389105593...
$${S}={a}+{b} \\ $$$${b}={S}−{a} \\ $$$$ \\ $$$${R}\sqrt{\mathrm{2}}+{R}+{b}=\left({a}+{b}\right)\sqrt{\mathrm{2}} \\ $$$${R}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)={a}\sqrt{\mathrm{2}}+\left(\sqrt{\mathrm{2}}−\mathrm{1}\right){b} \\ $$$${R}=\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){a}+\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right)\left({S}−{a}\right) \\ $$$${R}=\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){a}+\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right){S}−\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right){a} \\ $$$${R}=\left(\sqrt{\mathrm{2}}−\mathrm{1}\right){a}+\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right){S} \\ $$$${a}=\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){R}−\left(\sqrt{\mathrm{2}}−\mathrm{1}\right){S}\:…\:{E}_{\mathrm{1}} \\ $$$$ \\ $$$${R}^{\mathrm{2}} +\left({S}−{R}\right)^{\mathrm{2}} =\left({a}+{R}\right)^{\mathrm{2}} \\ $$$${a}=\sqrt{{S}^{\mathrm{2}} −\mathrm{2}{SR}+\mathrm{2}{R}^{\mathrm{2}} }−{R}\:…\:{E}_{\mathrm{2}} \\ $$$$ \\ $$$${Equalise}\:{E}_{\mathrm{1}} \:{and}\:{E}_{\mathrm{2}} \\ $$$$\sqrt{{S}^{\mathrm{2}} −\mathrm{2}{SR}+\mathrm{2}{R}^{\mathrm{2}} }−{R}=\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){R}−\left(\sqrt{\mathrm{2}}−\mathrm{1}\right){S} \\ $$$$\sqrt{{S}^{\mathrm{2}} −\mathrm{2}{SR}+\mathrm{2}{R}^{\mathrm{2}} }=\left(\sqrt{\mathrm{2}}+\mathrm{2}\right){R}−\left(\sqrt{\mathrm{2}}−\mathrm{1}\right){S} \\ $$$${S}^{\mathrm{2}} −\mathrm{2}{SR}+\mathrm{2}{R}^{\mathrm{2}} =\left(\mathrm{4}\sqrt{\mathrm{2}}+\mathrm{6}\right){R}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}{SR}+\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right){S}^{\mathrm{2}} \\ $$$$\left(\mathrm{4}\sqrt{\mathrm{2}}+\mathrm{4}\right){R}^{\mathrm{2}} +\left(\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}\right){SR}+\left(\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}\right){S}^{\mathrm{2}} =\mathrm{0} \\ $$$${R}=\frac{\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}\right){S}\pm\sqrt{\left(\mathrm{12}−\mathrm{8}\sqrt{\mathrm{2}}\right){S}^{\mathrm{2}} −\left(−\mathrm{32}\right){S}^{\mathrm{2}} }}{\mathrm{8}\sqrt{\mathrm{2}}+\mathrm{8}} \\ $$$${R}=\frac{\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}\right){S}\pm{S}\sqrt{\left(\mathrm{44}−\mathrm{8}\sqrt{\mathrm{2}}\right)}}{\mathrm{8}\sqrt{\mathrm{2}}+\mathrm{8}} \\ $$$${R}=\frac{{S}\left[\sqrt{\mathrm{2}}−\mathrm{1}+\sqrt{\mathrm{11}−\mathrm{2}\sqrt{\mathrm{2}}}\right]}{\mathrm{4}\sqrt{\mathrm{2}}+\mathrm{4}} \\ $$$${S}=\mathrm{1}\:\Rightarrow\:{R}=\frac{\sqrt{\mathrm{2}}−\mathrm{1}+\sqrt{\mathrm{11}−\mathrm{2}\sqrt{\mathrm{2}}}}{\mathrm{4}\sqrt{\mathrm{2}}+\mathrm{4}}\:\approx\:\mathrm{0}.\mathrm{3389105593}… \\ $$
Commented by ajfour last updated on 22/Nov/25
yes R≈0.33891    R= (3/4)−(1/( (√2)))+(√(((41)/(16))−((7(√2))/4)))
$${yes}\:{R}\approx\mathrm{0}.\mathrm{33891} \\ $$$$\:\:{R}=\:\frac{\mathrm{3}}{\mathrm{4}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\sqrt{\frac{\mathrm{41}}{\mathrm{16}}−\frac{\mathrm{7}\sqrt{\mathrm{2}}}{\mathrm{4}}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *