Menu Close

Question-226249




Question Number 226249 by fantastic2 last updated on 23/Nov/25
Commented by fantastic2 last updated on 23/Nov/25
Answered by mr W last updated on 24/Nov/25
Commented by mr W last updated on 24/Nov/25
such that the ball reaches point C,  ((mu^2 )/R)=mg  ⇒u^2 =gR  u_A ^2 =u^2 +2gR(1−cos α)=gR(3−2 cos α)  AB=2R sin α=((u_A ^2 sin 2α)/g)  2 sin α=(3−2 cos α)sin 2α  1=(3−2 cos α)cos α  2 cos^2  α−3 cos α+1=0  (2 cos α−1)(cos α−1)=0  ⇒cos α=1 ⇒α=0° ⇒rejected  ⇒cos α=(1/2) ⇒α=60° ✓
$${such}\:{that}\:{the}\:{ball}\:{reaches}\:{point}\:{C}, \\ $$$$\frac{{mu}^{\mathrm{2}} }{{R}}={mg} \\ $$$$\Rightarrow{u}^{\mathrm{2}} ={gR} \\ $$$${u}_{{A}} ^{\mathrm{2}} ={u}^{\mathrm{2}} +\mathrm{2}{gR}\left(\mathrm{1}−\mathrm{cos}\:\alpha\right)={gR}\left(\mathrm{3}−\mathrm{2}\:\mathrm{cos}\:\alpha\right) \\ $$$${AB}=\mathrm{2}{R}\:\mathrm{sin}\:\alpha=\frac{{u}_{{A}} ^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\alpha}{{g}} \\ $$$$\mathrm{2}\:\mathrm{sin}\:\alpha=\left(\mathrm{3}−\mathrm{2}\:\mathrm{cos}\:\alpha\right)\mathrm{sin}\:\mathrm{2}\alpha \\ $$$$\mathrm{1}=\left(\mathrm{3}−\mathrm{2}\:\mathrm{cos}\:\alpha\right)\mathrm{cos}\:\alpha \\ $$$$\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha−\mathrm{3}\:\mathrm{cos}\:\alpha+\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{2}\:\mathrm{cos}\:\alpha−\mathrm{1}\right)\left(\mathrm{cos}\:\alpha−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\mathrm{1}\:\Rightarrow\alpha=\mathrm{0}°\:\Rightarrow{rejected} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\alpha=\mathrm{60}°\:\checkmark \\ $$
Commented by fantastic2 last updated on 24/Nov/25
great sir
$${great}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *