Menu Close

Question-226338




Question Number 226338 by Spillover last updated on 25/Nov/25
Answered by Spillover last updated on 06/Dec/25
at point P(acos θ+bsin θ)aa    at point Q(acos (θ+(π/2))+isin(θ+(π/2))  Q=(asin θ,bcos θ  from equation of normal  ((a^2 x)/(acos  θ))−((by)/(sin θ))=a^2 −b^2   θ=θ  θ=θ+(π/2)  ((ax)/(acos ( θ+(π/2))))−((by)/(sin (θ+(π/2))))=a^2 −b^2   −((ax)/(sin θ))−((by)/(cos θ))=(a^2 −b^2 )  ((ax)/(sin θ))+((by)/(cos θ))=(b^2 −a^2 )    ......
$${at}\:{point}\:{P}\left({a}\mathrm{cos}\:\theta+{b}\mathrm{sin}\:\theta\right){aa} \\ $$$$ \\ $$$${at}\:{point}\:{Q}\left({a}\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{2}}\right)+{i}\mathrm{sin}\left(\theta+\frac{\pi}{\mathrm{2}}\right)\right. \\ $$$${Q}=\left({a}\mathrm{sin}\:\theta,{b}\mathrm{cos}\:\theta\right. \\ $$$${from}\:{equation}\:{of}\:{normal} \\ $$$$\frac{{a}^{\mathrm{2}} {x}}{{a}\mathrm{cos}\:\:\theta}−\frac{{by}}{\mathrm{sin}\:\theta}={a}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$$\theta=\theta \\ $$$$\theta=\theta+\frac{\pi}{\mathrm{2}} \\ $$$$\frac{{ax}}{{a}\mathrm{cos}\:\left(\:\theta+\frac{\pi}{\mathrm{2}}\right)}−\frac{{by}}{\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{2}}\right)}={a}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$$−\frac{{ax}}{\mathrm{sin}\:\theta}−\frac{{by}}{\mathrm{cos}\:\theta}=\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right) \\ $$$$\frac{{ax}}{\mathrm{sin}\:\theta}+\frac{{by}}{\mathrm{cos}\:\theta}=\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$$ \\ $$$$…… \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *