Menu Close

Question-226372




Question Number 226372 by ajfour last updated on 26/Nov/25
Commented by ajfour last updated on 26/Nov/25
Find radii (equal) of the two  circles. Rectangle sides are  length a=2, height b=1.
$${Find}\:{radii}\:\left({equal}\right)\:{of}\:{the}\:{two} \\ $$$${circles}.\:{Rectangle}\:{sides}\:{are} \\ $$$${length}\:{a}=\mathrm{2},\:{height}\:{b}=\mathrm{1}. \\ $$
Answered by fantastic2 last updated on 26/Nov/25
Commented by fantastic2 last updated on 26/Nov/25
a−r+b−r=(√(a^2 +b^2 ))  ⇒r=(1/2)((a+b)−(√(a^2 +b^2 )))
$${a}−{r}+{b}−{r}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{r}=\frac{\mathrm{1}}{\mathrm{2}}\left(\left({a}+{b}\right)−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right) \\ $$
Commented by ajfour last updated on 26/Nov/25
very intelligent!
$${very}\:{intelligent}! \\ $$
Commented by fantastic2 last updated on 26/Nov/25
another thing you can do  (which is bit complex)  α=tan^(−1) (b/a)  (r/(a−r))=tan (α/2)  r(1+tan (α/2))=atan (α/2)  ⇒r=((atan ((tan^(−1) (b/a))/2))/(1+tan ((tan^(−1) (b/a))/2)))
$${another}\:{thing}\:{you}\:{can}\:{do} \\ $$$$\left({which}\:{is}\:{bit}\:{complex}\right) \\ $$$$\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{{b}}{{a}} \\ $$$$\frac{{r}}{{a}−{r}}=\mathrm{tan}\:\frac{\alpha}{\mathrm{2}} \\ $$$${r}\left(\mathrm{1}+\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\right)={a}\mathrm{tan}\:\frac{\alpha}{\mathrm{2}} \\ $$$$\Rightarrow{r}=\frac{{a}\mathrm{tan}\:\frac{\mathrm{tan}^{−\mathrm{1}} \frac{{b}}{{a}}}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}\:\frac{\mathrm{tan}^{−\mathrm{1}} \frac{{b}}{{a}}}{\mathrm{2}}} \\ $$
Answered by mr W last updated on 26/Nov/25
(a+b+(√(a^2 +b^2 )))r=ab=2   ⇒r=((ab)/(a+b+(√(a^2 +b^2 ))))         =((ab(a+b−(√(a^2 +b^2 ))))/(2ab))         =((a+b−(√(a^2 +b^2 )))/2)
$$\left({a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right){r}={ab}=\mathrm{2}\: \\ $$$$\Rightarrow{r}=\frac{{ab}}{{a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:\:=\frac{{ab}\left({a}+{b}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\right)}{\mathrm{2}{ab}} \\ $$$$\:\:\:\:\:\:\:=\frac{{a}+{b}−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *