Menu Close

Question-226386




Question Number 226386 by fantastic2 last updated on 26/Nov/25
Commented by fantastic2 last updated on 27/Nov/25
l=5πR  a force F is given horizontally  for 1sec such that the speed of the ball  becomes 0 just before touching the cylinder  find the time taken to touch and the force
$${l}=\mathrm{5}\pi{R} \\ $$$${a}\:{force}\:{F}\:{is}\:{given}\:{horizontally} \\ $$$${for}\:\mathrm{1}{sec}\:{such}\:{that}\:{the}\:{speed}\:{of}\:{the}\:{ball} \\ $$$${becomes}\:\mathrm{0}\:{just}\:{before}\:{touching}\:{the}\:{cylinder} \\ $$$${find}\:{the}\:{time}\:{taken}\:{to}\:{touch}\:{and}\:{the}\:{force} \\ $$
Commented by mr W last updated on 28/Nov/25
what do you mean with “just before  touching the cylinder”? is it the  instant when the string is getting  completely wrapped around the   cylinder?
$${what}\:{do}\:{you}\:{mean}\:{with}\:“{just}\:{before} \\ $$$${touching}\:{the}\:{cylinder}''?\:{is}\:{it}\:{the} \\ $$$${instant}\:{when}\:{the}\:{string}\:{is}\:{getting} \\ $$$${completely}\:{wrapped}\:{around}\:{the}\: \\ $$$${cylinder}? \\ $$
Commented by fantastic2 last updated on 27/Nov/25
yes
$${yes}\: \\ $$
Commented by mr W last updated on 28/Nov/25
that means the initial velocity of  the mass must be large enoughso  that the string keeps being taut all  the time. then the velocity of the   mass can never become zero.
$${that}\:{means}\:{the}\:{initial}\:{velocity}\:{of} \\ $$$${the}\:{mass}\:{must}\:{be}\:{large}\:{enoughso} \\ $$$${that}\:{the}\:{string}\:{keeps}\:{being}\:{taut}\:{all} \\ $$$${the}\:{time}.\:{then}\:{the}\:{velocity}\:{of}\:{the}\: \\ $$$${mass}\:{can}\:{never}\:{become}\:{zero}. \\ $$
Answered by mr W last updated on 28/Nov/25
Commented by mr W last updated on 29/Nov/25
mV=Ft, t=1 sec.  ⇒V=((Ft)/m)  phase 2:  b=L−Rθ  ((mV^2 )/2)=((mu^2 )/2)+mg(L+R−R cos θ+b sin θ)  u^2 =V^2 −2g[L+R−R(cos θ+θ sin θ)+L sin θ]  mg sin θ+N=((mu^2 )/b)  let λ=(L/R),  =(V^( 2) /(gR))  (N/(mg))=(u^2 /(gb))−sin θ  (N/(mg))=((V^2 −2g[L+R−R(cos θ+θ sin θ)+L sin θ])/(g(L−Rθ)))−sin θ  (N/(mg))=(( −2(λ+1−cos θ−θ sin θ+λ sin θ))/(λ−θ))−sin θ  (N/(mg))=(( −2(λ+1−cos θ))/(λ−θ))−3 sin θ  such that the string can get wrapped  around the cylinder completely, it   must be kept taut all the time, i.e.   for 0≤θ<λ: N≥0.  for N_(min) :  ((−2 sin θ)/(λ−θ))+(( −2(λ+1−cos θ))/((λ−θ)^2 ))−3 cos θ=0  ⇒(λ−θ)[2 sin θ+3(λ−θ)cos θ]+2(λ+1−cos θ)=   for N_(min) =0:  (λ−θ)[2 sin θ+3(λ−θ)cos θ]+2(λ+1−cos θ)=2(λ+1−cos θ)+3(λ−θ)sin θ  ⇒θ_m +((tan θ_m )/3)=λ  ⇒ =(V^2 /(gR))≥2(λ+1−cos θ_m )+3(λ−θ_m ) sin θ_m   for λ=5π we get θ_m ≈1.54725≈88.65°  approximately N_(min)  is at θ_m ≈(π/2),   ≥≈2(λ+1)+3(λ−(π/2))=5λ+2−((3π)/2)    (u^2 /(gR))= −2[λ+1−cos θ+(λ−θ) sin θ]  ⇒u=(√(gR{ −2[λ+1−cos θ+(λ−θ) sin θ]}))  at θ=λ:  u∣_(θ=λ) =(√(gR[ −2(λ+1−cos λ)]))  this can never be zero.  it′s clear, the mass can never reach  a height such that the initial   kinetical energy ((mV^2 )/2) completely   transfered into potential energy.    u=bω=(L−Rθ)(dθ/dt)=R(λ−θ)(dθ/dt)  (√(gR{ −2[λ+1−cos θ+(λ−θ) sin θ]}))=R(λ−θ)(dθ/dt)  dt=(√(R/g))(((λ−θ)dθ)/( (√( −2[λ+1−cos θ+(λ−θ) sin θ]))))  ⇒T_2 =(√(R/g))∫_0 ^λ (((λ−θ)dθ)/( (√( −2[λ+1−cos θ+(λ−θ) sin θ]))))    phase 1:  u^2 +2gL(1−cos φ)=V^2   u=Lω=L(dφ/dt)=(√(V^2 −2gL(1−cos φ)))  (dφ/dt)=(√((g/L)((V^2 /(gL))−2+2 cos φ)))  dt=(√(L/g))(dφ/( (√(( /λ)−2+2 cos φ))))  ⇒T_1 =(√(L/g))∫_0 ^(π/2) (dφ/( (√(( /λ)−2+2 cos φ))))  total time needed:  T=T_1 +T_2
$${mV}={Ft},\:{t}=\mathrm{1}\:{sec}. \\ $$$$\Rightarrow{V}=\frac{{Ft}}{{m}} \\ $$$$\underline{{phase}\:\mathrm{2}:} \\ $$$${b}={L}−{R}\theta \\ $$$$\frac{{mV}^{\mathrm{2}} }{\mathrm{2}}=\frac{{mu}^{\mathrm{2}} }{\mathrm{2}}+{mg}\left({L}+{R}−{R}\:\mathrm{cos}\:\theta+{b}\:\mathrm{sin}\:\theta\right) \\ $$$${u}^{\mathrm{2}} ={V}^{\mathrm{2}} −\mathrm{2}{g}\left[{L}+{R}−{R}\left(\mathrm{cos}\:\theta+\theta\:\mathrm{sin}\:\theta\right)+{L}\:\mathrm{sin}\:\theta\right] \\ $$$${mg}\:\mathrm{sin}\:\theta+{N}=\frac{{mu}^{\mathrm{2}} }{{b}} \\ $$$${let}\:\lambda=\frac{{L}}{{R}},\:\:=\frac{{V}^{\:\mathrm{2}} }{{gR}} \\ $$$$\frac{{N}}{{mg}}=\frac{{u}^{\mathrm{2}} }{{gb}}−\mathrm{sin}\:\theta \\ $$$$\frac{{N}}{{mg}}=\frac{{V}^{\mathrm{2}} −\mathrm{2}{g}\left[{L}+{R}−{R}\left(\mathrm{cos}\:\theta+\theta\:\mathrm{sin}\:\theta\right)+{L}\:\mathrm{sin}\:\theta\right]}{{g}\left({L}−{R}\theta\right)}−\mathrm{sin}\:\theta \\ $$$$\frac{{N}}{{mg}}=\frac{\:−\mathrm{2}\left(\lambda+\mathrm{1}−\mathrm{cos}\:\theta−\theta\:\mathrm{sin}\:\theta+\lambda\:\mathrm{sin}\:\theta\right)}{\lambda−\theta}−\mathrm{sin}\:\theta \\ $$$$\frac{{N}}{{mg}}=\frac{\:−\mathrm{2}\left(\lambda+\mathrm{1}−\mathrm{cos}\:\theta\right)}{\lambda−\theta}−\mathrm{3}\:\mathrm{sin}\:\theta \\ $$$${such}\:{that}\:{the}\:{string}\:{can}\:{get}\:{wrapped} \\ $$$${around}\:{the}\:{cylinder}\:{completely},\:{it}\: \\ $$$${must}\:{be}\:{kept}\:{taut}\:{all}\:{the}\:{time},\:{i}.{e}.\: \\ $$$${for}\:\mathrm{0}\leqslant\theta<\lambda:\:{N}\geqslant\mathrm{0}. \\ $$$${for}\:{N}_{{min}} : \\ $$$$\frac{−\mathrm{2}\:\mathrm{sin}\:\theta}{\lambda−\theta}+\frac{\:−\mathrm{2}\left(\lambda+\mathrm{1}−\mathrm{cos}\:\theta\right)}{\left(\lambda−\theta\right)^{\mathrm{2}} }−\mathrm{3}\:\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\Rightarrow\left(\lambda−\theta\right)\left[\mathrm{2}\:\mathrm{sin}\:\theta+\mathrm{3}\left(\lambda−\theta\right)\mathrm{cos}\:\theta\right]+\mathrm{2}\left(\lambda+\mathrm{1}−\mathrm{cos}\:\theta\right)=\: \\ $$$${for}\:{N}_{{min}} =\mathrm{0}: \\ $$$$\left(\lambda−\theta\right)\left[\mathrm{2}\:\mathrm{sin}\:\theta+\mathrm{3}\left(\lambda−\theta\right)\mathrm{cos}\:\theta\right]+\mathrm{2}\left(\lambda+\mathrm{1}−\mathrm{cos}\:\theta\right)=\mathrm{2}\left(\lambda+\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{3}\left(\lambda−\theta\right)\mathrm{sin}\:\theta \\ $$$$\Rightarrow\theta_{{m}} +\frac{\mathrm{tan}\:\theta_{{m}} }{\mathrm{3}}=\lambda \\ $$$$\Rightarrow\:=\frac{{V}^{\mathrm{2}} }{{gR}}\geqslant\mathrm{2}\left(\lambda+\mathrm{1}−\mathrm{cos}\:\theta_{{m}} \right)+\mathrm{3}\left(\lambda−\theta_{{m}} \right)\:\mathrm{sin}\:\theta_{{m}} \\ $$$${for}\:\lambda=\mathrm{5}\pi\:{we}\:{get}\:\theta_{{m}} \approx\mathrm{1}.\mathrm{54725}\approx\mathrm{88}.\mathrm{65}° \\ $$$${approximately}\:{N}_{{min}} \:{is}\:{at}\:\theta_{{m}} \approx\frac{\pi}{\mathrm{2}}, \\ $$$$\:\geqslant\approx\mathrm{2}\left(\lambda+\mathrm{1}\right)+\mathrm{3}\left(\lambda−\frac{\pi}{\mathrm{2}}\right)=\mathrm{5}\lambda+\mathrm{2}−\frac{\mathrm{3}\pi}{\mathrm{2}} \\ $$$$ \\ $$$$\frac{{u}^{\mathrm{2}} }{{gR}}=\:−\mathrm{2}\left[\lambda+\mathrm{1}−\mathrm{cos}\:\theta+\left(\lambda−\theta\right)\:\mathrm{sin}\:\theta\right] \\ $$$$\Rightarrow{u}=\sqrt{{gR}\left\{\:−\mathrm{2}\left[\lambda+\mathrm{1}−\mathrm{cos}\:\theta+\left(\lambda−\theta\right)\:\mathrm{sin}\:\theta\right]\right\}} \\ $$$${at}\:\theta=\lambda: \\ $$$${u}\mid_{\theta=\lambda} =\sqrt{{gR}\left[\:−\mathrm{2}\left(\lambda+\mathrm{1}−\mathrm{cos}\:\lambda\right)\right]} \\ $$$${this}\:{can}\:{never}\:{be}\:{zero}. \\ $$$${it}'{s}\:{clear},\:{the}\:{mass}\:{can}\:{never}\:{reach} \\ $$$${a}\:{height}\:{such}\:{that}\:{the}\:{initial}\: \\ $$$${kinetical}\:{energy}\:\frac{{mV}^{\mathrm{2}} }{\mathrm{2}}\:{completely}\: \\ $$$${transfered}\:{into}\:{potential}\:{energy}. \\ $$$$ \\ $$$${u}={b}\omega=\left({L}−{R}\theta\right)\frac{{d}\theta}{{dt}}={R}\left(\lambda−\theta\right)\frac{{d}\theta}{{dt}} \\ $$$$\sqrt{{gR}\left\{\:−\mathrm{2}\left[\lambda+\mathrm{1}−\mathrm{cos}\:\theta+\left(\lambda−\theta\right)\:\mathrm{sin}\:\theta\right]\right\}}={R}\left(\lambda−\theta\right)\frac{{d}\theta}{{dt}} \\ $$$${dt}=\sqrt{\frac{{R}}{{g}}}\frac{\left(\lambda−\theta\right){d}\theta}{\:\sqrt{\:−\mathrm{2}\left[\lambda+\mathrm{1}−\mathrm{cos}\:\theta+\left(\lambda−\theta\right)\:\mathrm{sin}\:\theta\right]}} \\ $$$$\Rightarrow{T}_{\mathrm{2}} =\sqrt{\frac{{R}}{{g}}}\int_{\mathrm{0}} ^{\lambda} \frac{\left(\lambda−\theta\right){d}\theta}{\:\sqrt{\:−\mathrm{2}\left[\lambda+\mathrm{1}−\mathrm{cos}\:\theta+\left(\lambda−\theta\right)\:\mathrm{sin}\:\theta\right]}} \\ $$$$ \\ $$$$\underline{{phase}\:\mathrm{1}:} \\ $$$${u}^{\mathrm{2}} +\mathrm{2}{gL}\left(\mathrm{1}−\mathrm{cos}\:\phi\right)={V}^{\mathrm{2}} \\ $$$${u}={L}\omega={L}\frac{{d}\phi}{{dt}}=\sqrt{{V}^{\mathrm{2}} −\mathrm{2}{gL}\left(\mathrm{1}−\mathrm{cos}\:\phi\right)} \\ $$$$\frac{{d}\phi}{{dt}}=\sqrt{\frac{{g}}{{L}}\left(\frac{{V}^{\mathrm{2}} }{{gL}}−\mathrm{2}+\mathrm{2}\:\mathrm{cos}\:\phi\right)} \\ $$$${dt}=\sqrt{\frac{{L}}{{g}}}\frac{{d}\phi}{\:\sqrt{\frac{\:}{\lambda}−\mathrm{2}+\mathrm{2}\:\mathrm{cos}\:\phi}} \\ $$$$\Rightarrow{T}_{\mathrm{1}} =\sqrt{\frac{{L}}{{g}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{d}\phi}{\:\sqrt{\frac{\:}{\lambda}−\mathrm{2}+\mathrm{2}\:\mathrm{cos}\:\phi}} \\ $$$${total}\:{time}\:{needed}: \\ $$$${T}={T}_{\mathrm{1}} +{T}_{\mathrm{2}} \\ $$
Commented by mr W last updated on 29/Nov/25
Commented by fantastic2 last updated on 28/Nov/25
sir please explain why you took  λ as upper limit.  others are crystal clear.thank you.
$${sir}\:{please}\:{explain}\:{why}\:{you}\:{took} \\ $$$$\lambda\:{as}\:{upper}\:{limit}. \\ $$$${others}\:{are}\:{crystal}\:{clear}.{thank}\:{you}. \\ $$
Commented by mr W last updated on 28/Nov/25
λ=(L/R)  θ=λ means the instant as the  string is completely wrapped.  you can not go further!
$$\lambda=\frac{{L}}{{R}} \\ $$$$\theta=\lambda\:{means}\:{the}\:{instant}\:{as}\:{the} \\ $$$${string}\:{is}\:{completely}\:{wrapped}. \\ $$$${you}\:{can}\:{not}\:{go}\:{further}! \\ $$
Commented by fantastic2 last updated on 28/Nov/25
thanks sir!  i appretiate your time
$${thanks}\:{sir}! \\ $$$${i}\:{appretiate}\:{your}\:{time} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *