Menu Close

2x-1-5-a-5-x-5-a-4-x-4-a-3-x-3-a-1-x-a-0-find-a-5-a-3-a-1-and-a-4-a-2-a-0-




Question Number 226598 by fantastic2 last updated on 07/Dec/25
(2x+1)^5 =a_5 x^5 +a_4 x^4 +a_3 x^3 ..+a_1 x+a_0   find a_5 +a_3 +a_1 and a_4 +a_2 +a_0
$$\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{5}} ={a}_{\mathrm{5}} {x}^{\mathrm{5}} +{a}_{\mathrm{4}} {x}^{\mathrm{4}} +{a}_{\mathrm{3}} {x}^{\mathrm{3}} ..+{a}_{\mathrm{1}} {x}+{a}_{\mathrm{0}} \\ $$$${find}\:{a}_{\mathrm{5}} +{a}_{\mathrm{3}} +{a}_{\mathrm{1}} {and}\:{a}_{\mathrm{4}} +{a}_{\mathrm{2}} +{a}_{\mathrm{0}} \\ $$
Answered by mr W last updated on 07/Dec/25
with x=1:  3^5 =(a_5 +a_3 +a_1 )+(a_4 +a_2 +a_0 )=A+B   ...(i)  with x=−1:  (−1)^5 =(−a_5 −a_3 −a_1 )+(a_4 +a_2 +a_0 )=−A+B   ...(ii)  (i)−(ii):  3^5 −(−1)^5 =2A   ⇒A=122 ⇒B=A+(−1)^5 =121  i.e. a_5 +a_3 +a_1 =122,  a_4 +a_2 +a_0 =121
$${with}\:{x}=\mathrm{1}: \\ $$$$\mathrm{3}^{\mathrm{5}} =\left({a}_{\mathrm{5}} +{a}_{\mathrm{3}} +{a}_{\mathrm{1}} \right)+\left({a}_{\mathrm{4}} +{a}_{\mathrm{2}} +{a}_{\mathrm{0}} \right)={A}+{B}\:\:\:…\left({i}\right) \\ $$$${with}\:{x}=−\mathrm{1}: \\ $$$$\left(−\mathrm{1}\right)^{\mathrm{5}} =\left(−{a}_{\mathrm{5}} −{a}_{\mathrm{3}} −{a}_{\mathrm{1}} \right)+\left({a}_{\mathrm{4}} +{a}_{\mathrm{2}} +{a}_{\mathrm{0}} \right)=−{A}+{B}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$$\mathrm{3}^{\mathrm{5}} −\left(−\mathrm{1}\right)^{\mathrm{5}} =\mathrm{2}{A}\: \\ $$$$\Rightarrow{A}=\mathrm{122}\:\Rightarrow{B}={A}+\left(−\mathrm{1}\right)^{\mathrm{5}} =\mathrm{121} \\ $$$${i}.{e}.\:{a}_{\mathrm{5}} +{a}_{\mathrm{3}} +{a}_{\mathrm{1}} =\mathrm{122},\:\:{a}_{\mathrm{4}} +{a}_{\mathrm{2}} +{a}_{\mathrm{0}} =\mathrm{121} \\ $$
Commented by fantastic2 last updated on 07/Dec/25
great!
$${great}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *