Menu Close

Question-226610




Question Number 226610 by Spillover last updated on 07/Dec/25
Answered by mr W last updated on 07/Dec/25
2(12 cos ((πx)/3)+5 sin ((πx)/3))=13  ((12)/(13)) cos ((πx)/3)+(5/(13)) sin ((πx)/3)=(1/2)  with α=tan^(−1) (5/(12))=sin^(−1) (5/(13))=cos^(−1) ((12)/(13))  cos α cos ((πx)/3)+sin α sin ((πx)/3)=(1/2)  cos (((πx)/3)−α)=cos (π/3)  ((πx)/3)−α=2nπ±(π/3)  ⇒x=(3/π)(2nπ±(π/3)+α)  ⇒x=6n±1+(3/π) tan^(−1) (5/(12))
$$\mathrm{2}\left(\mathrm{12}\:\mathrm{cos}\:\frac{\pi{x}}{\mathrm{3}}+\mathrm{5}\:\mathrm{sin}\:\frac{\pi{x}}{\mathrm{3}}\right)=\mathrm{13} \\ $$$$\frac{\mathrm{12}}{\mathrm{13}}\:\mathrm{cos}\:\frac{\pi{x}}{\mathrm{3}}+\frac{\mathrm{5}}{\mathrm{13}}\:\mathrm{sin}\:\frac{\pi{x}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${with}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{12}}=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{13}}=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{12}}{\mathrm{13}} \\ $$$$\mathrm{cos}\:\alpha\:\mathrm{cos}\:\frac{\pi{x}}{\mathrm{3}}+\mathrm{sin}\:\alpha\:\mathrm{sin}\:\frac{\pi{x}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\left(\frac{\pi{x}}{\mathrm{3}}−\alpha\right)=\mathrm{cos}\:\frac{\pi}{\mathrm{3}} \\ $$$$\frac{\pi{x}}{\mathrm{3}}−\alpha=\mathrm{2}{n}\pi\pm\frac{\pi}{\mathrm{3}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{3}}{\pi}\left(\mathrm{2}{n}\pi\pm\frac{\pi}{\mathrm{3}}+\alpha\right) \\ $$$$\Rightarrow{x}=\mathrm{6}{n}\pm\mathrm{1}+\frac{\mathrm{3}}{\pi}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{5}}{\mathrm{12}} \\ $$
Commented by Spillover last updated on 07/Dec/25
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *