Question Number 226622 by fantastic2 last updated on 07/Dec/25

Commented by mr W last updated on 07/Dec/25

$$\lambda=\frac{{m}}{{n}}=\frac{{x}−{x}_{\mathrm{1}} }{{x}_{\mathrm{2}} −{x}}=\frac{{y}−{y}_{\mathrm{1}} }{{y}_{\mathrm{2}} −{y}} \\ $$$${if}\:\lambda<\mathrm{0},\:{there}\:{are}\:{only}\:{two}\:{cases}: \\ $$$${x}−{x}_{\mathrm{1}} >\mathrm{0},\:{x}_{\mathrm{2}} −{x}<\mathrm{0}\:\Rightarrow{x}>{max}\left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} \right) \\ $$$${x}−{x}_{\mathrm{1}} <\mathrm{0},\:{x}_{\mathrm{2}} −{x}>\mathrm{0}\:\Rightarrow{x}>{min}\left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} \right) \\ $$$${that}\:{means}\:\left({x},\:{y}\right)\:{lies}\:{outside}\:{the} \\ $$$${segment}\:{from}\:\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)\:{to}\:\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} \right). \\ $$
Commented by fantastic2 last updated on 07/Dec/25

$${thank}\:{you} \\ $$