Menu Close

Question-226766




Question Number 226766 by mr W last updated on 13/Dec/25
Answered by mahdipoor last updated on 13/Dec/25
if  f(x)=ax+b ⇒   f(x)=2x+1 or −2x−3  but its only answer?  all function can show as f(x)=Σ_(i=0) ^m (a_i x^i )  (teylor exp)  ⇒f(f(x))=(a_m )^2 x^m +...=4x+3⇒a_m =0  Now  f(x)=Σ_(i=0) ^(m−1) (a_i x^i )  ⇒f(f(x))=(a_(m−1) )^2 x^(m−1) +...=4x+3⇒a_(m−1) =0  ...  ⇒just  a_2  , a_1  ≠0
$$\mathrm{if}\:\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{ax}+\mathrm{b}\:\Rightarrow \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{1}\:\mathrm{or}\:−\mathrm{2x}−\mathrm{3} \\ $$$$\mathrm{but}\:\mathrm{its}\:\mathrm{only}\:\mathrm{answer}? \\ $$$$\mathrm{all}\:\mathrm{function}\:\mathrm{can}\:\mathrm{show}\:\mathrm{as}\:\mathrm{f}\left(\mathrm{x}\right)=\underset{\mathrm{i}=\mathrm{0}} {\overset{\mathrm{m}} {\sum}}\left(\mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \right)\:\:\left(\mathrm{teylor}\:\mathrm{exp}\right) \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)=\left(\mathrm{a}_{\mathrm{m}} \right)^{\mathrm{2}} \mathrm{x}^{\mathrm{m}} +…=\mathrm{4x}+\mathrm{3}\Rightarrow\mathrm{a}_{\mathrm{m}} =\mathrm{0} \\ $$$$\mathrm{Now}\:\:\mathrm{f}\left(\mathrm{x}\right)=\underset{\mathrm{i}=\mathrm{0}} {\overset{\mathrm{m}−\mathrm{1}} {\sum}}\left(\mathrm{a}_{\mathrm{i}} \mathrm{x}^{\mathrm{i}} \right) \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)=\left(\mathrm{a}_{\mathrm{m}−\mathrm{1}} \right)^{\mathrm{2}} \mathrm{x}^{\mathrm{m}−\mathrm{1}} +…=\mathrm{4x}+\mathrm{3}\Rightarrow\mathrm{a}_{\mathrm{m}−\mathrm{1}} =\mathrm{0} \\ $$$$… \\ $$$$\Rightarrow\mathrm{just}\:\:\mathrm{a}_{\mathrm{2}} \:,\:\mathrm{a}_{\mathrm{1}} \:\neq\mathrm{0} \\ $$
Commented by mr W last updated on 14/Dec/25
��
Commented by aleks041103 last updated on 24/Dec/25
What if the function cannot be expanded in  taylor series?  For example:  f(x)=e^(−1/x^2 )  around x=0
$$\mathrm{What}\:\mathrm{if}\:\mathrm{the}\:\mathrm{function}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{expanded}\:\mathrm{in} \\ $$$$\mathrm{taylor}\:\mathrm{series}? \\ $$$$\mathrm{For}\:\mathrm{example}: \\ $$$${f}\left({x}\right)={e}^{−\mathrm{1}/{x}^{\mathrm{2}} } \:\mathrm{around}\:{x}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *