Menu Close

By-using-De-Moivres-theorm-simplify-a-cos-pi-2-isin-pi-2-cos-pi-3-isin-pi-3-cos-pi-3-isin-pi-3-b-cos-pi-8-isin-pi-8-cos-pi-6-isin-pi-6-




Question Number 226779 by Spillover last updated on 14/Dec/25
By using De Moivres theorm  simplify  (a)(((cos (π/2)−isin (π/2))(cos (π/3)+isin (π/3)))/(cos (π/3)−isin (π/3)))  (b)((cos (π/8)+isin (π/8))/(cos (π/6)+isin (π/6)))
$${By}\:{using}\:{De}\:{Moivres}\:{theorm} \\ $$$${simplify} \\ $$$$\left({a}\right)\frac{\left(\mathrm{cos}\:\frac{\pi}{\mathrm{2}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{2}}\right)\left(\mathrm{cos}\:\frac{\pi}{\mathrm{3}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\right)}{\mathrm{cos}\:\frac{\pi}{\mathrm{3}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}} \\ $$$$\left({b}\right)\frac{\mathrm{cos}\:\frac{\pi}{\mathrm{8}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{8}}}{\mathrm{cos}\:\frac{\pi}{\mathrm{6}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{6}}} \\ $$
Answered by Frix last updated on 14/Dec/25
((e^(−i(π/2)) e^(i(π/3)) )/e^(−i(π/3)) )=e^(i(π/6)) =cos (π/6) +i sin (π/6)    (e^(i(π/8)) /e^(i(π/6)) )=e^(−i(π/(24))) =cos (π/(24)) −i sin (π/(24))
$$\frac{\mathrm{e}^{−\mathrm{i}\frac{\pi}{\mathrm{2}}} \mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{3}}} }{\mathrm{e}^{−\mathrm{i}\frac{\pi}{\mathrm{3}}} }=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{6}}} =\mathrm{cos}\:\frac{\pi}{\mathrm{6}}\:+\mathrm{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{6}} \\ $$$$ \\ $$$$\frac{\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{8}}} }{\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{6}}} }=\mathrm{e}^{−\mathrm{i}\frac{\pi}{\mathrm{24}}} =\mathrm{cos}\:\frac{\pi}{\mathrm{24}}\:−\mathrm{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{24}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *