Question Number 226798 by aba_math last updated on 15/Dec/25

$${let}\:{gcd}\left({m},{n}\right)=\mathrm{1}.\:{Determine}\:{gcd}\left(\mathrm{5}^{{m}} +\mathrm{7}^{{m}} ,\mathrm{5}^{{n}} +\mathrm{7}^{{n}} \right) \\ $$
Answered by Frix last updated on 15/Dec/25

$${a},\:{b},\:{c},\:…\:\in\mathbb{N} \\ $$$$\mathrm{5}^{{a}} =\mathrm{2}{b}+\mathrm{1} \\ $$$$\mathrm{5}^{{a}} =\begin{cases}{\mathrm{3}{c}+\mathrm{1};\:{b}=\mathrm{2}{d}}\\{\mathrm{3}{c}−\mathrm{1};\:{b}=\mathrm{2}{d}+\mathrm{1}}\end{cases} \\ $$$$\mathrm{5}^{{a}} =\mathrm{4}{e}+\mathrm{1} \\ $$$$\mathrm{7}^{{a}} =\mathrm{2}{f}+\mathrm{1} \\ $$$$\mathrm{7}^{{a}} =\mathrm{3}{g}+\mathrm{1} \\ $$$$\mathrm{7}^{{a}} =\begin{cases}{\mathrm{4}{h}+\mathrm{1};\:{h}=\mathrm{2}{i}}\\{\mathrm{4}{h}−\mathrm{1};\:{h}=\mathrm{2}{i}+\mathrm{1}}\end{cases} \\ $$$$\Rightarrow \\ $$$$\mathrm{2}\mid\mathrm{5}^{{n}} +\mathrm{7}^{{n}} \\ $$$$\mathrm{3}\mid\mathrm{5}^{{n}} +\mathrm{7}^{{n}} ;\:{n}=\mathrm{2}{k}+\mathrm{1} \\ $$$$\mathrm{4}\mid\mathrm{5}^{{n}} +\mathrm{7}^{{n}} ;\:{n}=\mathrm{2}{k}+\mathrm{1} \\ $$$$ \\ $$$$\mathrm{Conclusion} \\ $$$$\mathrm{gcd}\:\left({m},\:{n}\right)\:=\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\mathrm{gcd}\:\left(\mathrm{5}^{{m}} +\mathrm{7}^{{m}} ,\:\mathrm{5}^{{n}} +\mathrm{7}^{{n}} \right)\:=\begin{cases}{\mathrm{12};\:{m}\:\mathrm{odd}\:\wedge\:{n}\:\mathrm{odd}}\\{\mathrm{2};\:{m}\:\mathrm{even}\:\vee\:{n}\:\mathrm{even}\:}\end{cases} \\ $$$$\mathrm{Open}\:\mathrm{to}\:\mathrm{prove}: \\ $$$$\mathrm{Is}\:\mathrm{there}\:\mathrm{another}\:\mathrm{possible}\:\mathrm{value}? \\ $$$$\mathrm{Sorry}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{the}\:\mathrm{time}… \\ $$