Menu Close

Question-226866




Question Number 226866 by Estevao last updated on 17/Dec/25
Commented by Jyrgen last updated on 17/Dec/25
∫(√(1+x^n ))dx=x _1 F_2  (−(1/2), (1/n); 1+(1/n); −x^n )
$$\int\sqrt{\mathrm{1}+{x}^{{n}} }{dx}={x}\:_{\mathrm{1}} {F}_{\mathrm{2}} \:\left(−\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{1}}{{n}};\:\mathrm{1}+\frac{\mathrm{1}}{{n}};\:−{x}^{{n}} \right) \\ $$
Commented by Estevao last updated on 17/Dec/25
Good
$${Good} \\ $$
Answered by Estevao last updated on 17/Dec/25
Go Go
$${Go}\:{Go} \\ $$
Answered by breniam last updated on 17/Dec/25
  By Chebyshev theorem it is not solvable  using elementary functions.
$$ \\ $$$$\mathrm{By}\:\mathrm{Chebyshev}\:\mathrm{theorem}\:\mathrm{it}\:\mathrm{is}\:\mathrm{not}\:\mathrm{solvable} \\ $$$$\mathrm{using}\:\mathrm{elementary}\:\mathrm{functions}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *