Menu Close

Question-226919




Question Number 226919 by Spillover last updated on 19/Dec/25
Answered by Ghisom_ last updated on 19/Dec/25
6..._(n) 8^2 =4..._(n) 62..._(n) 4  ⇒ Σ_(digits) =(4+2)n+6+4=6n+10  n=10^5 −1 ⇒ Σ_(digits) =600004
$$\underset{{n}} {\underbrace{\mathrm{6}…}}\mathrm{8}^{\mathrm{2}} =\underset{{n}} {\underbrace{\mathrm{4}…}}\mathrm{6}\underset{{n}} {\underbrace{\mathrm{2}…}}\mathrm{4} \\ $$$$\Rightarrow\:\underset{{digits}} {\sum}=\left(\mathrm{4}+\mathrm{2}\right){n}+\mathrm{6}+\mathrm{4}=\mathrm{6}{n}+\mathrm{10} \\ $$$${n}=\mathrm{10}^{\mathrm{5}} −\mathrm{1}\:\Rightarrow\:\underset{{digits}} {\sum}=\mathrm{600004} \\ $$
Commented by Spillover last updated on 19/Dec/25
thanks
$${thanks} \\ $$
Answered by Raphael254 last updated on 19/Dec/25
  68^2  = 4624, 668^2  = 446224,  6668^2  = 44462224    (6666666...68)^2  = 444...6...222...4    (Σ_(i=1) ^(10^5 −1)  (4 + 2)) + (6 + 4)  = (Σ_(i=1) ^(10^5 −1)  6) + 10  = 6×(10^5 −1)+10  = 6×10^5 −6+10  = 6×10^5 +4  = 600000+4  = 600004
$$ \\ $$$$\mathrm{68}^{\mathrm{2}} \:=\:\mathrm{4624},\:\mathrm{668}^{\mathrm{2}} \:=\:\mathrm{446224}, \\ $$$$\mathrm{6668}^{\mathrm{2}} \:=\:\mathrm{44462224} \\ $$$$ \\ $$$$\left(\mathrm{6666666}…\mathrm{68}\right)^{\mathrm{2}} \:=\:\mathrm{444}…\mathrm{6}…\mathrm{222}…\mathrm{4} \\ $$$$ \\ $$$$\left(\underset{{i}=\mathrm{1}} {\overset{\mathrm{10}^{\mathrm{5}} −\mathrm{1}} {\sum}}\:\left(\mathrm{4}\:+\:\mathrm{2}\right)\right)\:+\:\left(\mathrm{6}\:+\:\mathrm{4}\right) \\ $$$$=\:\left(\underset{{i}=\mathrm{1}} {\overset{\mathrm{10}^{\mathrm{5}} −\mathrm{1}} {\sum}}\:\mathrm{6}\right)\:+\:\mathrm{10} \\ $$$$=\:\mathrm{6}×\left(\mathrm{10}^{\mathrm{5}} −\mathrm{1}\right)+\mathrm{10} \\ $$$$=\:\mathrm{6}×\mathrm{10}^{\mathrm{5}} −\mathrm{6}+\mathrm{10} \\ $$$$=\:\mathrm{6}×\mathrm{10}^{\mathrm{5}} +\mathrm{4} \\ $$$$=\:\mathrm{600000}+\mathrm{4} \\ $$$$=\:\mathrm{600004} \\ $$
Commented by Spillover last updated on 19/Dec/25
thanks
$${thanks} \\ $$
Answered by HeMath last updated on 19/Dec/25
  6666...68^2  _(10^5  digits)  = (6.666 × 10^5 )^2                          = 44.4444 × 10^(10 )                         = 4.44 × 10^(11 ) ⇒ 10^(11)  digits #
$$\:\underbrace{\:\underset{\mathrm{10}^{\mathrm{5}} \:\mathrm{digits}} {\mathrm{6666}…\mathrm{68}^{\mathrm{2}} \:}}\:=\:\left(\mathrm{6}.\mathrm{666}\:×\:\mathrm{10}^{\mathrm{5}} \right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{44}.\mathrm{4444}\:×\:\mathrm{10}^{\mathrm{10}\:} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{4}.\mathrm{44}\:×\:\mathrm{10}^{\mathrm{11}\:} \Rightarrow\:\mathrm{10}^{\mathrm{11}} \:\mathrm{digits}\:# \\ $$
Commented by Spillover last updated on 19/Dec/25
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *