Menu Close

If-and-are-root-of-the-equation-x-2-2x-4-0-and-for-n-N-Show-that-n-n-2-n-1-cos-npi-3-




Question Number 227016 by Spillover last updated on 25/Dec/25
If α and .β  are root of the equation  x^2 −2x+4=0 and for n∈N  Show that   α^n +β^n =2^(n+1) cos (((nπ)/3))
$${If}\:\alpha\:{and}\:.\beta\:\:{are}\:{root}\:{of}\:{the}\:{equation} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{4}=\mathrm{0}\:{and}\:{for}\:{n}\in\mathbb{N} \\ $$$${Show}\:{that}\: \\ $$$$\alpha^{{n}} +\beta^{{n}} =\mathrm{2}^{{n}+\mathrm{1}} \mathrm{cos}\:\left(\frac{{n}\pi}{\mathrm{3}}\right) \\ $$
Answered by Frix last updated on 25/Dec/25
x^2 −2x+4=0  (x−1)^2 +3=0  x=1±i(√3)=2e^(±i(π/3))   α^n +β^n =2^n (e^(i((nπ)/3)) +e^(−i((nπ)/3)) )=       [We know ((e^(iθ) +e^(−iθ) )/2)=cos θ]  =2^(n+1) cos ((nπ)/3)
$${x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{4}=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}=\mathrm{0} \\ $$$${x}=\mathrm{1}\pm\mathrm{i}\sqrt{\mathrm{3}}=\mathrm{2e}^{\pm\mathrm{i}\frac{\pi}{\mathrm{3}}} \\ $$$$\alpha^{{n}} +\beta^{{n}} =\mathrm{2}^{{n}} \left(\mathrm{e}^{\mathrm{i}\frac{{n}\pi}{\mathrm{3}}} +\mathrm{e}^{−\mathrm{i}\frac{{n}\pi}{\mathrm{3}}} \right)= \\ $$$$\:\:\:\:\:\left[\mathrm{We}\:\mathrm{know}\:\frac{\mathrm{e}^{\mathrm{i}\theta} +\mathrm{e}^{−\mathrm{i}\theta} }{\mathrm{2}}=\mathrm{cos}\:\theta\right] \\ $$$$=\mathrm{2}^{{n}+\mathrm{1}} \mathrm{cos}\:\frac{{n}\pi}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *