Question Number 227055 by Spillover last updated on 28/Dec/25

$${A}\:{parabolic}\:{refector}\:{is}\:{formed}\:{by} \\ $$$${revolving}\:{the}\:{arc}\:{of}\:{the}\:{parabala} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{ax}\:\:{from}\:{x}=\mathrm{0}\:\:\:\:{to}\:\:{x}={h} \\ $$$${about}\:{the}\:{axis}.{If}\:{the}\:\:{diameter} \\ $$$${of}\:{the}\:{reflector}\:{is}\:\mathrm{2}{l}.{Show}\:{that} \\ $$$${the}\:{area}\:{of}\:{the}\:{reflecting}\:{surface}\:{is} \\ $$$$\frac{\pi{l}}{\mathrm{6}{h}^{\mathrm{2}} }\left\{\left({l}^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} −{l}^{\mathrm{3}} \right\} \\ $$$$ \\ $$