Menu Close

Question-227073




Question Number 227073 by Spillover last updated on 29/Dec/25
Answered by Kassista last updated on 29/Dec/25
  (dy/dx)= ((−(x−b)+(a−x))/(2(√((a−x)(x−b)))))−(a−b).(1/(1+((√((a−x)/(x−b))))^2 )).(((−(x−b)−(a−x))/((x−b)^2 ))/(2(√((a−x)/(x−b)))))      ∴(dy/dx)=((b+a−2x)/(2(√((a−x)(x−b)))))−(a−b).(1/((x−b+a−x)/(x−b))).((b−a)/((x−b)^2 )).((√(x−b))/(2(√(a−x))))    ∴(dy/dx)=((b+a−2x)/(2(√((a−x)))(√((x−b)))))−(a−b).((x−b^1 )/(a−b)).((b−a)/((x−b)^2 )).(((x−b)^(0.5) )/(2(√(a−x))))      ∴(dy/dx)=((b+a−2x)/(2(√(a−x))(√(x−b))))−((b−a)/( (√(x−b)))).(1/(2(√(a−x))))    ∴(dy/dx)=(1/( 2(√(a−x))(√(x−b))))(2a−2x)=(((a−x))/( (√(a−x))(√(x−b))))    ∴(dy/dx)=((√(a−x))/( (√(x−b))))=(√((a−x)/(x−b)))
$$ \\ $$$$\frac{{dy}}{{dx}}=\:\frac{−\left({x}−{b}\right)+\left({a}−{x}\right)}{\mathrm{2}\sqrt{\left({a}−{x}\right)\left({x}−{b}\right)}}−\left({a}−{b}\right).\frac{\mathrm{1}}{\mathrm{1}+\left(\sqrt{\frac{{a}−{x}}{{x}−{b}}}\right)^{\mathrm{2}} }.\frac{\frac{−\left({x}−{b}\right)−\left({a}−{x}\right)}{\left({x}−{b}\right)^{\mathrm{2}} }}{\mathrm{2}\sqrt{\frac{{a}−{x}}{{x}−{b}}}} \\ $$$$ \\ $$$$ \\ $$$$\therefore\frac{{dy}}{{dx}}=\frac{{b}+{a}−\mathrm{2}{x}}{\mathrm{2}\sqrt{\left({a}−{x}\right)\left({x}−{b}\right)}}−\left({a}−{b}\right).\frac{\mathrm{1}}{\frac{{x}−{b}+{a}−{x}}{{x}−{b}}}.\frac{{b}−{a}}{\left({x}−{b}\right)^{\mathrm{2}} }.\frac{\sqrt{{x}−{b}}}{\mathrm{2}\sqrt{{a}−{x}}} \\ $$$$ \\ $$$$\therefore\frac{{dy}}{{dx}}=\frac{{b}+{a}−\mathrm{2}{x}}{\mathrm{2}\sqrt{\left({a}−{x}\right)}\sqrt{\left({x}−{b}\right)}}−\left({a}−{b}\right).\frac{{x}−{b}^{\mathrm{1}} }{{a}−{b}}.\frac{{b}−{a}}{\left({x}−{b}\right)^{\mathrm{2}} }.\frac{\left({x}−{b}\right)^{\mathrm{0}.\mathrm{5}} }{\mathrm{2}\sqrt{{a}−{x}}} \\ $$$$ \\ $$$$ \\ $$$$\therefore\frac{{dy}}{{dx}}=\frac{{b}+{a}−\mathrm{2}{x}}{\mathrm{2}\sqrt{{a}−{x}}\sqrt{{x}−{b}}}−\frac{{b}−{a}}{\:\sqrt{{x}−{b}}}.\frac{\mathrm{1}}{\mathrm{2}\sqrt{{a}−{x}}} \\ $$$$ \\ $$$$\therefore\frac{{dy}}{{dx}}=\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{{a}−{x}}\sqrt{{x}−{b}}}\left(\mathrm{2}{a}−\mathrm{2}{x}\right)=\frac{\left({a}−{x}\right)}{\:\sqrt{{a}−{x}}\sqrt{{x}−{b}}} \\ $$$$ \\ $$$$\therefore\frac{{dy}}{{dx}}=\frac{\sqrt{{a}−{x}}}{\:\sqrt{{x}−{b}}}=\sqrt{\frac{{a}−{x}}{{x}−{b}}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *