Menu Close

is-e-pi-real-number-




Question Number 227063 by fantastic2 last updated on 29/Dec/25
is (−e)^π   real number?
$${is}\:\left(−{e}\right)^{\pi} \:\:{real}\:{number}? \\ $$
Answered by Frix last updated on 29/Dec/25
 {: ((abs (−e) =e)),((arg (−e) =π)) } ⇒ −e=e^(iπ) e  (−e)^π =e^(iπ^2 ) e^π =e^π (cos π^2  +i sin π^2 ) ∉R
$$\left.\begin{matrix}{\mathrm{abs}\:\left(−\mathrm{e}\right)\:=\mathrm{e}}\\{\mathrm{arg}\:\left(−\mathrm{e}\right)\:=\pi}\end{matrix}\right\}\:\Rightarrow\:−\mathrm{e}=\mathrm{e}^{\mathrm{i}\pi} \mathrm{e} \\ $$$$\left(−\mathrm{e}\right)^{\pi} =\mathrm{e}^{\mathrm{i}\pi^{\mathrm{2}} } \mathrm{e}^{\pi} =\mathrm{e}^{\pi} \left(\mathrm{cos}\:\pi^{\mathrm{2}} \:+\mathrm{i}\:\mathrm{sin}\:\pi^{\mathrm{2}} \right)\:\notin\mathbb{R} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *