Menu Close

Question-227080




Question Number 227080 by Spillover last updated on 29/Dec/25
Answered by Kassista last updated on 29/Dec/25
a) lim_(x→−6)  f(x) = lim_(x→−6)  7−4x = 7−4(−6)= 31    b) lim_(x→1^− )  f(x) = lim_(x→1^− )  7−4x = 7−4(1)=3    and lim_(x→1^+ ) f(x) = lim_(x→1^+ )  x^2 +2x = 1+2(1)=3  since lim_(x→1−)  f(x)=1=lim_(x→1^+ )  f(x) ⇒ lim_(x→1) f(x)=1
$$\left.{a}\right)\:\underset{{x}\rightarrow−\mathrm{6}} {\mathrm{lim}}\:{f}\left({x}\right)\:=\:\underset{{x}\rightarrow−\mathrm{6}} {\mathrm{lim}}\:\mathrm{7}−\mathrm{4}{x}\:=\:\mathrm{7}−\mathrm{4}\left(−\mathrm{6}\right)=\:\mathrm{31} \\ $$$$ \\ $$$$\left.{b}\right)\:\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:{f}\left({x}\right)\:=\:\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\mathrm{7}−\mathrm{4}{x}\:=\:\mathrm{7}−\mathrm{4}\left(\mathrm{1}\right)=\mathrm{3} \\ $$$$\:\:{and}\:\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}{f}\left({x}\right)\:=\:\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:{x}^{\mathrm{2}} +\mathrm{2}{x}\:=\:\mathrm{1}+\mathrm{2}\left(\mathrm{1}\right)=\mathrm{3} \\ $$$${since}\:\underset{{x}\rightarrow\mathrm{1}−} {\mathrm{lim}}\:{f}\left({x}\right)=\mathrm{1}=\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:{f}\left({x}\right)\:\Rightarrow\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}{f}\left({x}\right)=\mathrm{1} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *