Question Number 227198 by Hanuda354 last updated on 05/Jan/26

Commented by Hanuda354 last updated on 05/Jan/26

$$\mathrm{Given}\:\mathrm{a}\:\mathrm{square}\:\mathrm{with}\:\mathrm{four}\:\mathrm{semicircles}\:\mathrm{and}\:\mathrm{a}\:\mathrm{quarter}\:\mathrm{circle},\:\mathrm{where}\:\mathrm{the}\:\mathrm{blue} \\ $$$$\mathrm{point}\:\mathrm{is}\:\mathrm{on}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{the}\:\mathrm{smaller}\:\mathrm{semicircle}\:\mathrm{on}\:\mathrm{bottom}\:\mathrm{right}. \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{shaded}\:\mathrm{region}\:\left(\mathrm{purple}\:\mathrm{area}\right).\: \\ $$
Answered by fantastic2 last updated on 06/Jan/26

Commented by fantastic2 last updated on 07/Jan/26

$${Area}\:{is}\:{approximately}\:\mathrm{10}.\mathrm{55475578490369} \\ $$$${or} \\ $$$${Area}=\:\left(\mathrm{64}−\left(\mathrm{8}\pi+\mathrm{4}\pi\right)\right)−\left(\mathrm{8}\pi−\left(\mathrm{4}\left(\mathrm{tan}^{−\mathrm{1}} \mathrm{2}+\mathrm{4tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\right)+\mathrm{8}\left(\pi−\mathrm{2}\right)\right)\right) \\ $$$$−\left(\mathrm{64}−\left(\mathrm{16}\pi+\mathrm{8}\pi−\mathrm{16}\left(\mathrm{tan}^{−\mathrm{1}} \mathrm{2}+\mathrm{4tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\right)\right)\right) \\ $$$$−\left(\mathrm{3}.\mathrm{2}+\mathrm{2}+\left(\mathrm{32tan}^{−\mathrm{1}} \frac{\mathrm{4}.\mathrm{8}}{\mathrm{6}.\mathrm{4}}−\mathrm{32sin}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}.\mathrm{8}}{\mathrm{6}.\mathrm{4}}\right)−\pi\right)+\mathrm{4}\left(\mathrm{tan}^{−\mathrm{1}} \mathrm{2}+\mathrm{4tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\right) \\ $$$${the}\:{calculation}\:{is}\:{too}\:{messy}.\:{i}\:{will}\:{do}\:{it}\:{tomorrow}. \\ $$$${dont}\:{have}\:{time}\:{now} \\ $$
Commented by Hanuda354 last updated on 06/Jan/26

$$\mathrm{Thanks} \\ $$