Question Number 227276 by mr W last updated on 11/Jan/26

Commented by mr W last updated on 11/Jan/26

$${A}\:{hemispherical}\:{funnel}\:{is}\:{placed} \\ $$$${tightly}\:{against}\:{the}\:{top}\:{of}\:{a}\:{table}.\: \\ $$$${Water}\:{is}\:{poured}\:{into}\:{it}\:{slowly}\: \\ $$$${through}\:{a}\:{small}\:{hole}\:{located}\:{at}\:{the}\: \\ $$$${highest}\:{point}\:{of}\:{the}\:{funnel}.\:{When}\: \\ $$$${the}\:{wate}\:{level}\:{inside}\:{the}\:{funnel}\: \\ $$$${just}\:{reaches}\:{the}\:{hole}\:{the}\:{funnel}\: \\ $$$${begins}\:{to}\:{float}\:{upward}\:{and}\:{the}\: \\ $$$${water}\:{starts}\:{to}\:{flow}\:{out}\:{from}\:{the}\: \\ $$$${bottom}.\:{If}\:{the}\:{radius}\:{of}\:\:{the}\:{funnel}\: \\ $$$${is}\:{R}=\mathrm{10}\:{cm}\:{and}\:{the}\:{density}\:{of}\:{water} \\ $$$${is}\:\rho=\mathrm{1}\:{g}/{cm}^{\mathrm{3}} ,\:{find}\:{the}\:{mass}\:{of}\:{the}\: \\ $$$${funnel}. \\ $$