Menu Close

Prove-that-in-any-acute-ABC-if-I-is-the-in-center-and-H-is-the-ortho-center-then-1-IA-1-IB-1-IC-1-HA-1-HB-1-HC-




Question Number 227325 by hardmath last updated on 16/Jan/26
Prove that in any acute △ABC   if I is the in-center and H is the ortho-center  then:  (1/(IA)) + (1/(IB)) + (1/(IC))  ≤  (1/(HA)) + (1/(HB)) + (1/(HC))
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\mathrm{acute}\:\bigtriangleup\mathrm{ABC}\: \\ $$$$\mathrm{if}\:\mathrm{I}\:\mathrm{is}\:\mathrm{the}\:\mathrm{in}-\mathrm{center}\:\mathrm{and}\:\mathrm{H}\:\mathrm{is}\:\mathrm{the}\:\mathrm{ortho}-\mathrm{center} \\ $$$$\mathrm{then}: \\ $$$$\frac{\mathrm{1}}{\mathrm{IA}}\:+\:\frac{\mathrm{1}}{\mathrm{IB}}\:+\:\frac{\mathrm{1}}{\mathrm{IC}}\:\:\leqslant\:\:\frac{\mathrm{1}}{\mathrm{HA}}\:+\:\frac{\mathrm{1}}{\mathrm{HB}}\:+\:\frac{\mathrm{1}}{\mathrm{HC}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *