Question Number 227325 by hardmath last updated on 16/Jan/26

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\mathrm{acute}\:\bigtriangleup\mathrm{ABC}\: \\ $$$$\mathrm{if}\:\mathrm{I}\:\mathrm{is}\:\mathrm{the}\:\mathrm{in}-\mathrm{center}\:\mathrm{and}\:\mathrm{H}\:\mathrm{is}\:\mathrm{the}\:\mathrm{ortho}-\mathrm{center} \\ $$$$\mathrm{then}: \\ $$$$\frac{\mathrm{1}}{\mathrm{IA}}\:+\:\frac{\mathrm{1}}{\mathrm{IB}}\:+\:\frac{\mathrm{1}}{\mathrm{IC}}\:\:\leqslant\:\:\frac{\mathrm{1}}{\mathrm{HA}}\:+\:\frac{\mathrm{1}}{\mathrm{HB}}\:+\:\frac{\mathrm{1}}{\mathrm{HC}} \\ $$