Menu Close

3-444-4-333-Find-the-remainder-when-dividing-the-number-by-7-




Question Number 227371 by Math1 last updated on 18/Jan/26
3^(444)   +  4^(333)   Find the remainder when dividing the  number by 7
$$\mathrm{3}^{\mathrm{444}} \:\:+\:\:\mathrm{4}^{\mathrm{333}} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:\mathrm{dividing}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{by}\:\mathrm{7} \\ $$
Answered by A5T last updated on 19/Jan/26
φ(7)=6  444=6q and 333=6k+3  ⇒3^(444) +4^(333) =(3^6 )^q +(4^6 )^k 4^3 ≡1+1∙4^3 ≡65≡2(mod 7)
$$\phi\left(\mathrm{7}\right)=\mathrm{6} \\ $$$$\mathrm{444}=\mathrm{6q}\:\mathrm{and}\:\mathrm{333}=\mathrm{6k}+\mathrm{3} \\ $$$$\Rightarrow\mathrm{3}^{\mathrm{444}} +\mathrm{4}^{\mathrm{333}} =\left(\mathrm{3}^{\mathrm{6}} \right)^{\mathrm{q}} +\left(\mathrm{4}^{\mathrm{6}} \right)^{\mathrm{k}} \mathrm{4}^{\mathrm{3}} \equiv\mathrm{1}+\mathrm{1}\centerdot\mathrm{4}^{\mathrm{3}} \equiv\mathrm{65}\equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{7}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *