Menu Close

x-2-x-1-1-1-1-1-1-1-1-1-x-




Question Number 227393 by fantastic2 last updated on 20/Jan/26
x^2 +x+1=1+(1/(1+(1/(1+(1/(1+(1/(...))))))))  x=?
$${x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{…}}}} \\ $$$${x}=? \\ $$
Answered by Ghisom_ last updated on 20/Jan/26
x^2 +x+1=y  y=1+(1/y)  x^2 +x+1=1+(1/(x^2 +x+1))  x^4 +2x^3 +2x^2 +x−1=0  (x+(1/2))^4 +(1/2)(x+(1/2))^2 −((19)/(16))=0  (x+(1/2))^2 =−(1/4)±((√5)/2)  x=−(1/2)±((√(−1+2(√5)))/2)∨x=−(1/2)±((√(1+2(√5)))/2)i
$${x}^{\mathrm{2}} +{x}+\mathrm{1}={y} \\ $$$${y}=\mathrm{1}+\frac{\mathrm{1}}{{y}} \\ $$$${x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$$${x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{1}=\mathrm{0} \\ $$$$\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}} +\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{19}}{\mathrm{16}}=\mathrm{0} \\ $$$$\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{4}}\pm\frac{\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${x}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{−\mathrm{1}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}}\vee{x}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{2}}\mathrm{i} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *