Question Number 141122 by mathsuji last updated on 15/May/21
![M=<a;a+1;a+2;...;a+n> N=<a;a^2 ;a^3 ;...;a^n > be an ideals in Q[a] ; where n∈2Z M/N=?](https://www.tinkutara.com/question/Q141122.png)
$${M}=<{a};{a}+\mathrm{1};{a}+\mathrm{2};…;{a}+{n}> \\ $$$${N}=<{a};{a}^{\mathrm{2}} ;{a}^{\mathrm{3}} ;…;{a}^{{n}} > \\ $$$${be}\:{an}\:{ideals}\:{in}\:{Q}\left[{a}\right]\:;\:{where}\:\:{n}\in\mathrm{2}\mathbb{Z} \\ $$$${M}/{N}=? \\ $$
Commented by mathsuji last updated on 16/May/21

$${Sir},\:{mr}.{W}\:{please}… \\ $$
Commented by mr W last updated on 16/May/21

$${i}\:{don}'{t}\:{understand}\:{the}\:{question}. \\ $$$${can}\:{you}\:{please}\:{explain}\:{me}? \\ $$
Commented by mathsuji last updated on 16/May/21
![dear Sir, I M and N is an ideals of ring Q[a], clear M subset of N, I will ask what is the factor ring as an isomorphic...](https://www.tinkutara.com/question/Q141202.png)
$${dear}\:{Sir},\:{I}\:{M}\:{and}\:{N}\:{is}\:{an}\:{ideals} \\ $$$${of}\:{ring}\:{Q}\left[{a}\right],\:{clear}\:{M}\:{subset}\:{of}\:{N}, \\ $$$${I}\:{will}\:{ask}\:{what}\:{is}\:{the}\:{factor}\:{ring}\:{as} \\ $$$${an}\:{isomorphic}… \\ $$
Commented by mr W last updated on 16/May/21

$${i}\:{don}'{t}\:{know}\:{this}\:{kind}\:{of}\:{thing}. \\ $$