Question Number 221151 by gregori last updated on 25/May/25 $$\:\frac{\sqrt{{x}^{\mathrm{2}} −{x}−\sqrt{{x}^{\mathrm{2}} −{x}−\sqrt{{x}^{\mathrm{2}} −{x}−\sqrt{…}}}}}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} \:\sqrt{{x}\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} \:\sqrt{{x}…}}}}}\:=\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\:\Rightarrow\:\frac{\mathrm{2}}{{x}}\:=?\: \\ $$ Commented by Frix last updated on…
Question Number 221112 by MrGaster last updated on 25/May/25 Commented by SdC355 last updated on 25/May/25 $$\mathrm{oh}\:\mathrm{Sorry}….\:\mathrm{i}\:\mathrm{uploaded}\:\mathrm{wrong}…… \\ $$ Commented by MrGaster last updated on…
Question Number 221168 by universe last updated on 25/May/25 Answered by Frix last updated on 26/May/25 $$\mathrm{Let}\:{b}={pa}\wedge{p}<\mathrm{0} \\ $$$$\lambda=\mathrm{min}\:\left(\frac{{p}−\mathrm{1}}{{ap}}\sqrt{\mathrm{2}{a}^{\mathrm{4}} {p}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} {p}+\mathrm{1}}\right) \\ $$$$\mathrm{Using}\:\mathrm{partial}\:\mathrm{differenciation}\:\mathrm{we}\:\mathrm{get} \\…
Question Number 221132 by fantastic last updated on 25/May/25 Commented by fantastic last updated on 25/May/25 $${can}\:{someone}\:{give}\:{me}\:{a}\:{DETAILED}\:{and}\:{EASY}\:{SOLUTION}?\: \\ $$$${i}\:{solved}\:{it}\:{in}\:{very}\:{lengthy}\:{and}\:{hard}\:{method} \\ $$ Commented by mr W…
Question Number 221135 by MathematicalUser2357 last updated on 25/May/25 $$\mathrm{South}\:\mathrm{Korean}\:\mathrm{Grade}\:\mathrm{12}\:\mathrm{math} \\ $$$$\mathrm{Prove}\:\mathrm{log}_{{a}} {M}^{{n}} ={n}\mathrm{log}_{{a}} {M} \\ $$$$\mathrm{Using}\:\mathrm{below}: \\ $$$$\mathrm{When}\:{M}={a}^{{x}} ,\:\mathrm{log}_{{a}} {M}={x} \\ $$$$\mathrm{When}\:{N}={a}^{{y}} ,\:\mathrm{log}_{{a}} {N}={y}…
Question Number 221129 by SdC355 last updated on 25/May/25 $$\mathrm{prove} \\ $$$$\mathrm{Contour}\:\mathrm{integral}\:\mathrm{repreasentation} \\ $$$$\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix}=\frac{\mathrm{1}}{\mathrm{2}\pi\boldsymbol{{i}}}\:\oint_{\:{C}} \:\left(\mathrm{1}−{z}\right)^{{p}} {z}^{−{q}} \:\frac{\mathrm{d}{z}}{{z}} \\ $$ Answered by MrGaster last updated on…
Question Number 221153 by gregori last updated on 25/May/25 $$\:\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}^{{x}} }\:+\:\frac{\mathrm{1}}{\mathrm{3}^{{x}} }\:+\:\frac{\mathrm{1}}{\mathrm{4}^{{x}} }\:+\:…\:+\frac{\mathrm{1}}{\mathrm{4000}^{{x}} } \\ $$$$\:\:{f}\left(\mathrm{2}\right)\:+\:{f}\left(\mathrm{3}\right)\:+\:{f}\left(\mathrm{4}\right)+\:…\:=? \\ $$ Commented by Frix last updated on 25/May/25…
Question Number 221154 by gregori last updated on 25/May/25 $$\:{f}\left({x}\right)=\:\frac{{x}}{\mid\:{x}\:\mid\:+\:\mathrm{1}} \\ $$$$\:\:{f}\left({f}\left({f}\left({f}\left({x}\right)\right)\right)\right)\:=? \\ $$ Commented by Frix last updated on 25/May/25 $$\frac{{x}}{\mathrm{4}\mid{x}\mid+\mathrm{1}} \\ $$$${f}_{\mathrm{1}} \left({x}\right)=\frac{{x}}{\mid{x}\mid+\mathrm{1}}…
Question Number 221081 by SdC355 last updated on 24/May/25 $$\mathrm{for}\:\mathrm{all}\:{m},{n},{p}\in\mathbb{R} \\ $$$$\left(\mathrm{g}\left({m}\right)+{n}\right)\left(\mathrm{g}\left({n}\right)+{m}\right)={p}^{\mathrm{2}} \left(\mathrm{perfect}\:\mathrm{square}\:\mathrm{number}\right) \\ $$$$\mathrm{find}\:\mathrm{function}\:\mathrm{g};\mathbb{N}\rightarrow\mathbb{N} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 221078 by MrGaster last updated on 24/May/25