Menu Close

Author: Tinku Tara

Question-221025

Question Number 221025 by Tawa11 last updated on 22/May/25 Answered by mr W last updated on 23/May/25 $$\mathrm{20}\:{convex}\:{quadrilaterals}\:\left({red}\right) \\ $$$$\mathrm{5}\:{concave}\:{quadrilaterals}\:\left({blue}\right) \\ $$$$\mathrm{25}\:{cross}−{quadrilaterals}\:\left({green}\right) \\ $$$$\Rightarrow{totally}\:\mathrm{50}\:{quadrilaterals} \\…

Let-a-b-c-be-positive-reals-such-that-abc-1-prove-that-1-a-3-b-c-1-b-3-c-a-1-c-3-a-b-3-2-

Question Number 220987 by fantastic last updated on 21/May/25 $${Let}\:{a},{b},{c}\:{be}\:{positive}\:{reals}\:{such}\:{that}\:{abc}=\mathrm{1}.{prove}\:{that} \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{3}} \left({b}+{c}\right)}+\frac{\mathrm{1}}{{b}^{\mathrm{3}} \left({c}+{a}\right)}+\frac{\mathrm{1}}{{c}^{\mathrm{3}} \left({a}+{b}\right)}\geqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$ Answered by mr W last updated on 21/May/25…

e-x-2-y-2-dV-0-2pi-0-r-e-r-2-drd-pi-i-can-t-understand-domain-of-integration-I-I-J-0-0-2pi-

Question Number 220976 by SdC355 last updated on 21/May/25 $$\int_{−\infty} ^{\:+\infty} \int_{−\infty} ^{\:+\infty} \:{e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} \mathrm{d}{V}\:\rightarrow\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \int_{\mathrm{0}} ^{\:\infty} \:{r}\centerdot{e}^{−{r}^{\mathrm{2}} } \mathrm{d}{r}\mathrm{d}\theta=\pi \\ $$$$\mathrm{i}\:\mathrm{can}'\mathrm{t}\:\mathrm{understand}\:\mathrm{domain}\:\mathrm{of}\:\mathrm{integration}…

1-x-2-y-2-4-2-dxdy-x-rcos-y-rsin-J-rdrd-0-2pi-0-r-r-2-4-2-drd-1-8-0-2pi-d-pi-4-Q-if-0-0-1-x-2-

Question Number 220972 by SdC355 last updated on 21/May/25 $$\int_{−\infty} ^{+\infty} \int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} }\:\mathrm{d}{x}\mathrm{d}{y} \\ $$$${x}={r}\mathrm{cos}\left(\theta\right) \\ $$$${y}={r}\mathrm{sin}\left(\theta\right) \\ $$$$\mid\mid\boldsymbol{{J}}\mid\mid={r}\mathrm{d}{r}\mathrm{d}\theta \\ $$$$\int_{\mathrm{0}}…

Prove-k-0-n-1-3-k-cos-3-3-k-n-pi-3-4-1-3-n-1-cos-pi-3-n-

Question Number 220973 by MrGaster last updated on 21/May/25 $$\mathrm{Prove}:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\frac{\mathrm{1}}{\mathrm{3}}\right)^{{k}} \mathrm{cos}^{\mathrm{3}} \left(\mathrm{3}^{{k}−{n}} \pi\right)=\frac{\mathrm{3}}{\mathrm{4}}\left[\left(−\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}+\mathrm{1}} +\mathrm{cos}\frac{\pi}{\mathrm{3}^{{n}} }\right] \\ $$ Answered by universe last updated on…

Find-the-general-solution-of-the-differential-equation-x-2-d-3-y-dx-3-x-d-2-y-dx-2-6-dy-dx-6-y-x-x-ln-x-1-x-2-x-gt-0-

Question Number 220964 by fantastic last updated on 21/May/25 $${Find}\:{the}\:{general}\:{solution}\:{of}\:{the}\:{differential}\:{equation} \\ $$$${x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }\:+\:{x}\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\mathrm{6}\frac{{dy}}{{dx}}+\mathrm{6}\frac{{y}}{{x}}=\frac{{x}\:\mathrm{ln}\:{x}+\mathrm{1}}{{x}^{\mathrm{2}} },\left[{x}>\mathrm{0}\right] \\ $$ Terms of Service Privacy Policy…

Let-f-R-2-R-be-defined-by-f-x-y-y-sin-y-1-y-0-y-0-Then-the-integral-1-pi-2-x-0-1-y-sin-1-x-pi-2-f-x-y-dy-dx-correct-upto-three-decimal-places-is-

Question Number 220963 by fantastic last updated on 21/May/25 $${Let}\:{f}:\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}\:{be}\:{defined}\:{by}\:{f}\left({x},{y}\right)=\left\{\frac{{y}}{\underset{\:\:\mathrm{1},\:{y}=\mathrm{0}} {\mathrm{sin}\:{y}}},\:{y}\neq\mathrm{0}\right. \\ $$$${Then}\:{the}\:{integral}\:\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\underset{{x}=\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{{y}=\mathrm{sin}^{−\mathrm{1}} {x}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}{f}\left({x},{y}\right){dy}\:{dx}\:{correct}\:{upto}\:{three}\:{decimal}\:{places},{is}… \\ $$ Answered by MrGaster…