Menu Close

Author: Tinku Tara

k-1-13-1-sin-pi-4-k-1-pi-6-sin-pi-4-kpi-6-

Question Number 220947 by fantastic last updated on 21/May/25 $$\underset{{k}=\mathrm{1}} {\overset{\mathrm{13}} {\sum}}\:\:\frac{\mathrm{1}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\frac{\left({k}−\mathrm{1}\right)\pi}{\mathrm{6}}\right)\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+\frac{{k}\pi}{\mathrm{6}}\right)} \\ $$ Answered by MrGaster last updated on 21/May/25 $$=\underset{{k}=\mathrm{1}} {\overset{\mathrm{13}} {\sum}}\mathrm{2}\left[\mathrm{cot}\left(\frac{\pi}{\mathrm{4}}+\frac{\left({k}−\mathrm{1}\right)\pi}{\mathrm{6}}\right)−\mathrm{cot}\left(\frac{\pi}{\mathrm{4}}+\frac{{k}\pi}{\mathrm{6}}\right)\right] \\…

Question-220995

Question Number 220995 by hardmath last updated on 21/May/25 Answered by Frix last updated on 22/May/25 $$\mathrm{Let}\:\mathrm{the}\:\mathrm{red}\:\mathrm{line}\:=\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{30}°}=\frac{{a}}{\mathrm{sin}\:\mathrm{15}°}\:\Rightarrow \\ $$$$\:\:\:\:\:{a}=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\frac{{a}}{\mathrm{sin}\:{x}}=\frac{\mathrm{1}}{\mathrm{sin}\:\left(\mathrm{135}°−{x}\right)}=\frac{\sqrt{\mathrm{2}}}{\mathrm{cos}\:{x}\:+\mathrm{sin}\:{x}}\Rightarrow \\ $$$$\:\:\:\:\:{a}=\frac{\sqrt{\mathrm{2}}\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}\:+\mathrm{sin}\:{x}}=\frac{\sqrt{\mathrm{2}}\mathrm{tan}\:{x}}{\mathrm{1}+\mathrm{tan}\:{x}}…

211-Find-the-derivative-of-x-where-x-determinant-f-1-x-1-x-1-x-f-2-x-2-x-2-x-f-3-x-3-x-3-x-and-f-1-x-f-2-x-f-3-x-1-x-etc-

Question Number 220863 by fantastic last updated on 20/May/25 $$\left(\mathrm{211}\right) \\ $$$$\:\: \\ $$$${Find}\:{the}\:{derivative}\:{of}\:\Delta{x},\:{where} \\ $$$$\Delta{x}=\begin{vmatrix}{{f}_{\mathrm{1}} \left({x}\right)}&{\phi_{\mathrm{1}} \left({x}\right)}&{\Psi_{\mathrm{1}} \left({x}\right)}\\{{f}_{\mathrm{2}} \left({x}\right)}&{\phi_{\mathrm{2}} \left({x}\right)}&{\Psi_{\mathrm{2}} \left({x}\right)}\\{{f}_{\mathrm{3}} \left({x}\right)}&{\phi_{\mathrm{3}} \left({x}\right)}&{\Psi_{\mathrm{3}} \left({x}\right)}\end{vmatrix}…

Prove-that-tan-20-0-tan40-0-tan-80-0-tan-60-0-

Question Number 220857 by fantastic last updated on 20/May/25 $${Prove}\:{that}\:\mathrm{tan}\:\mathrm{20}^{\mathrm{0}} \mathrm{tan40}^{\mathrm{0}} \:\mathrm{tan}\:\mathrm{80}^{\mathrm{0}} =\mathrm{tan}\:\mathrm{60}^{\mathrm{0}} \\ $$ Answered by fantastic last updated on 20/May/25 $$\mathrm{tan}\:\mathrm{20}^{\mathrm{0}} \mathrm{tan40}^{\mathrm{0}} \:\mathrm{tan}\:\mathrm{80}^{\mathrm{0}}…

Lim-x-0-xe-x-log-1-x-x-2-

Question Number 220852 by fantastic last updated on 20/May/25 $$\underset{{x}\rightarrow\mathrm{0}} {{Lim}}\left\{\frac{{xe}^{{x}} −{log}\left(\mathrm{1}+{x}\right)}{{x}^{\mathrm{2}} }\right\} \\ $$ Answered by SdC355 last updated on 20/May/25 $$\frac{\frac{\mathrm{d}\:\:}{\mathrm{d}{x}}\left({xe}^{{x}} −\mathrm{ln}\left({x}+\mathrm{1}\right)\right)}{\frac{\mathrm{d}\:}{\mathrm{d}{x}}\:{x}^{\mathrm{2}} }=\frac{\left({x}+\mathrm{1}\right){e}^{{x}}…

The-two-solutions-of-the-equation-are-the-same-a-b-c-x-2-b-c-a-x-c-a-b-0-Prove-that-1-a-1-c-2-b-

Question Number 220853 by fantastic last updated on 20/May/25 $${The}\:{two}\:{solutions}\:{of}\:{the}\:{equation}\:{are}\:{the}\:{same} \\ $$$${a}\left({b}−{c}\right){x}^{\mathrm{2}\:} +{b}\left({c}−{a}\right){x}+{c}\left({a}−{b}\right)=\mathrm{0} \\ $$$${Prove}\:{that}\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{c}}=\frac{\mathrm{2}}{{b}} \\ $$ Answered by fantastic last updated on 20/May/25 $${In}\:{any}\:{quadratic}\:{equation}\:\alpha{x}^{\mathrm{2}}…