Menu Close

Author: Tinku Tara

Question-220876

Question Number 220876 by Spillover last updated on 20/May/25 Answered by Rasheed.Sindhi last updated on 20/May/25 $$\left({a}\right)\:\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){n} \\ $$$$\:\:\:\:\:\:=\frac{\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){n}\left({n}−\mathrm{1}\right)!}{\left({n}−\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:=\frac{\left({n}+\mathrm{2}\right)!}{\left({n}−\mathrm{1}\right)!} \\ $$ Commented by…

Question-220877

Question Number 220877 by Spillover last updated on 20/May/25 Answered by Rasheed.Sindhi last updated on 20/May/25 $$\left({a}\right)\:\left({n}+\mathrm{2}\right)!+\left({n}+\mathrm{1}\right)!+{n}! \\ $$$$=\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){n}!+\left({n}+\mathrm{1}\right){n}!+{n}! \\ $$$$={n}!\left(\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right)+\left({n}+\mathrm{1}\right)+\mathrm{1}\right) \\ $$$$\left.={n}!\left\{\:\left({n}+\mathrm{1}\right)\left({n}+\mathrm{3}\right)+\mathrm{1}\right)\right\} \\ $$$$={n}!\left({n}^{\mathrm{2}}…

Question-220878

Question Number 220878 by Spillover last updated on 20/May/25 Answered by Rasheed.Sindhi last updated on 22/May/25 $$\frac{{n}!}{\left({n}−{r}\right)!{r}!}+\frac{\mathrm{2}×{n}!}{\left({n}−{r}+\mathrm{1}\right)!\left({r}−\mathrm{1}\right)!}+\frac{{n}!}{\left({n}−{r}+\mathrm{2}\right)!\left({r}−\mathrm{2}\right)!} \\ $$$$\frac{{n}!}{\left({n}−{r}\right)!{r}\left({r}−\mathrm{1}\right)\left({r}−\mathrm{2}\right)!}+\frac{\mathrm{2}×{n}!}{\left({n}−{r}+\mathrm{1}\right)\left({n}−{r}\right)!\left({r}−\mathrm{1}\right)\left({r}−\mathrm{2}\right)!}+\frac{{n}!}{\left({n}−{r}+\mathrm{2}\right)\left({n}−{r}+\mathrm{1}\right)\left({n}−{r}\right)!\left({r}−\mathrm{2}\right)!} \\ $$$$\frac{{n}!}{\left({n}−{r}\right)!\left({r}−\mathrm{2}\right)!}\left(\frac{\mathrm{1}}{{r}\left({r}−\mathrm{1}\right)}+\frac{\mathrm{2}}{\left({n}−{r}+\mathrm{1}\right)\left({r}−\mathrm{1}\right)}+\frac{\mathrm{1}}{\left({n}−{r}+\mathrm{2}\right)\left({n}−{r}+\mathrm{1}\right)}\right) \\ $$$$\frac{{n}!}{\left({n}−{r}\right)!\left({r}−\mathrm{2}\right)!}\left(\frac{\left({n}−{r}+\mathrm{2}\right)\left({n}−{r}+\mathrm{1}\right)+\mathrm{2}{r}\left({n}−{r}+\mathrm{2}\right)+{r}\left({r}−\mathrm{1}\right)}{{r}\left({r}−\mathrm{1}\right)\left({n}−{r}+\mathrm{2}\right)\left({n}−{r}+\mathrm{1}\right)}\right) \\ $$$$\frac{{n}!}{\left({n}−{r}\right)!\left({r}−\mathrm{2}\right)!}\left(\frac{\left({n}−{r}\right)^{\mathrm{2}}…

Question-220810

Question Number 220810 by Rojarani last updated on 19/May/25 Commented by Ghisom last updated on 19/May/25 $$\mathrm{without}\:\mathrm{further}\:\mathrm{information}\:\mathrm{we}\:\mathrm{can}\:\mathrm{let} \\ $$$${a}={b}={c}={k}\:\Rightarrow \\ $$$${k}=\frac{\mathrm{2}^{\mathrm{1}/\mathrm{3}} −\mathrm{1}}{\mathrm{27}}\:\Rightarrow \\ $$$${a}+{b}+{c}=\mathrm{3}{k}=\frac{\mathrm{2}^{\mathrm{1}/\mathrm{3}} −\mathrm{1}}{\mathrm{9}}…