Question Number 220626 by Spillover last updated on 17/May/25 Answered by mr W last updated on 17/May/25 $$\left.\mathrm{1}\right)\:\mathrm{4}\:{couples}\:{in}\:{one}\:{compartment} \\ $$$$\Rightarrow\mathrm{2}\:{ways} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{3}\:{couples}\:{in}\:{one}\:{compartment} \\ $$$$\mathrm{2}×{C}_{\mathrm{4}} ^{\mathrm{3}}…
Question Number 220627 by Spillover last updated on 17/May/25 Answered by mr W last updated on 17/May/25 $$\left.\mathrm{1}\right)\:{no}\:{egg}\:{in}\:{all}\:{three}\:{days}: \\ $$$$\mathrm{3}!=\mathrm{6}\:{ways} \\ $$$$\left.\mathrm{2}\right)\:{egg}\:{in}\:{one}\:{day}: \\ $$$$\mathrm{3}×\mathrm{3}×\mathrm{3}×\mathrm{2}=\mathrm{54}\:{ways} \\…
Question Number 220652 by SdC355 last updated on 17/May/25 $$\mathrm{Show}\:\mathrm{that} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\frac{{e}^{−{st}} }{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{d}{t}=\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\boldsymbol{\mathrm{H}}_{\mathrm{0}} ^{\:} \left({s}\right)−{Y}_{\mathrm{0}} \left({s}\right)\right)\:,\:{s}\in\mathbb{R}\backslash\left\{\mathrm{0}\right\} \\ $$ Terms of Service Privacy…
Question Number 220655 by MrGaster last updated on 17/May/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 220676 by fantastic last updated on 17/May/25 $$\int\:\frac{{xdx}}{\left(\mathrm{1}−{cosx}\right)^{\mathrm{2}} } \\ $$ Answered by Frix last updated on 17/May/25 $${I}=\int\frac{{x}}{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:\overset{\left[\mathrm{by}\:\mathrm{parts}\right]} {=} \\ $$$$=−\frac{\left(\mathrm{2}−\mathrm{cos}\:{x}\right)\left(\mathrm{1}+\mathrm{cos}\:{x}\right)^{\mathrm{2}}…
Question Number 220644 by Nicholas666 last updated on 17/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\:\sqrt{\left(\mathrm{2}{x}\:−\:\mathrm{1}\right)\centerdot\left(\mathrm{2}{x}\:+\:\mathrm{2}\right)}}\:{dx} \\ $$$$ \\ $$ Answered by Ghisom last updated on…
Question Number 220677 by fantastic last updated on 17/May/25 $$\int\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}\:}}{dx} \\ $$ Answered by Frix last updated on 17/May/25 $$\int\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{dx}\:\overset{\left[{t}=\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\right]} {=} \\…
Question Number 220704 by SdC355 last updated on 17/May/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 220673 by SdC355 last updated on 17/May/25 $$\mathrm{evaluate} \\ $$$$\mathrm{1}.\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{cos}\left({mt}\right)}{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t} \\ $$$$\mathrm{2}.\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{sin}\left({z}^{\mathrm{2}} \right)\:\mathrm{d}{z}\:\mathrm{and}\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{cos}\left({z}^{\mathrm{2}} \right)\:\mathrm{d}{z} \\ $$$${by}\:{using}\:{complex}\:{integral}..…
Question Number 220706 by SdC355 last updated on 18/May/25 Terms of Service Privacy Policy Contact: info@tinkutara.com