Menu Close

Author: Tinku Tara

Show-that-0-e-st-t-2-1-dt-1-2-pi-H-0-s-Y-0-s-s-R-0-

Question Number 220652 by SdC355 last updated on 17/May/25 $$\mathrm{Show}\:\mathrm{that} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\frac{{e}^{−{st}} }{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{d}{t}=\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\boldsymbol{\mathrm{H}}_{\mathrm{0}} ^{\:} \left({s}\right)−{Y}_{\mathrm{0}} \left({s}\right)\right)\:,\:{s}\in\mathbb{R}\backslash\left\{\mathrm{0}\right\} \\ $$ Terms of Service Privacy…

xdx-1-cosx-2-

Question Number 220676 by fantastic last updated on 17/May/25 $$\int\:\frac{{xdx}}{\left(\mathrm{1}−{cosx}\right)^{\mathrm{2}} } \\ $$ Answered by Frix last updated on 17/May/25 $${I}=\int\frac{{x}}{\left(\mathrm{1}−\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}\:\overset{\left[\mathrm{by}\:\mathrm{parts}\right]} {=} \\ $$$$=−\frac{\left(\mathrm{2}−\mathrm{cos}\:{x}\right)\left(\mathrm{1}+\mathrm{cos}\:{x}\right)^{\mathrm{2}}…

1-2-2x-2-2x-1-2x-2-dx-

Question Number 220644 by Nicholas666 last updated on 17/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\:\sqrt{\left(\mathrm{2}{x}\:−\:\mathrm{1}\right)\centerdot\left(\mathrm{2}{x}\:+\:\mathrm{2}\right)}}\:{dx} \\ $$$$ \\ $$ Answered by Ghisom last updated on…

x-x-2-1-dx-

Question Number 220677 by fantastic last updated on 17/May/25 $$\int\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}\:}}{dx} \\ $$ Answered by Frix last updated on 17/May/25 $$\int\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{dx}\:\overset{\left[{t}=\sqrt{{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\right]} {=} \\…

evaluate-1-0-cos-mt-t-2-1-dt-2-0-sin-z-2-dz-and-0-cos-z-2-dz-by-using-complex-integral-

Question Number 220673 by SdC355 last updated on 17/May/25 $$\mathrm{evaluate} \\ $$$$\mathrm{1}.\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{cos}\left({mt}\right)}{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t} \\ $$$$\mathrm{2}.\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{sin}\left({z}^{\mathrm{2}} \right)\:\mathrm{d}{z}\:\mathrm{and}\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{cos}\left({z}^{\mathrm{2}} \right)\:\mathrm{d}{z} \\ $$$${by}\:{using}\:{complex}\:{integral}..…