Menu Close

Author: Tinku Tara

E-z-2-x-2-y-2-dV-with-the-boundaries-of-the-integration-region-E-defined-by-x-2-y-2-z-2-4-x-2-y-2-1-z-

Question Number 220674 by Nicholas666 last updated on 17/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\int\int_{\:{E}\:} \:\:\frac{{z}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} }}\:\:{dV} \\ $$$$\:\:\:\:\:\mathrm{with}\:\mathrm{the}\:\mathrm{boundaries}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integration}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathrm{region}\:{E}\:\mathrm{defined}\:\mathrm{by};\: \\ $$$$\:\:\:\:\:\:\bullet\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} +\:{z}^{\mathrm{2}} \:\leqslant\:\mathrm{4}…

Calculate-i-i-i-i-i-

Question Number 220642 by SdC355 last updated on 17/May/25 $$\mathrm{Calculate} \\ $$$$\boldsymbol{{i}}\uparrow\uparrow^{\infty} =?? \\ $$$$\boldsymbol{{i}}\uparrow\uparrow^{\infty} =\boldsymbol{{i}}^{\boldsymbol{{i}}^{\boldsymbol{{i}}^{\iddots} } } \\ $$ Answered by Ghisom last updated…

Question-220606

Question Number 220606 by MrGaster last updated on 16/May/25 Commented by MrGaster last updated on 16/May/25 24168/6=4028. First, look at the green 2, the only combination of 4*6 that multiplies to a number in the 20s is 24. The divisor can only be 4 or 6, but 4 multiplied by the last digit 8 of the quotient gives 32, and there is no 3 in the given number, so the divisor can only be 6. The rest is easy to deduce. Answered by cadmon98 last updated on 16/May/25 $$…

Question-220602

Question Number 220602 by fantastic last updated on 16/May/25 Answered by A5T last updated on 16/May/25 $$\mathrm{Let}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{and}\:\mathrm{circumference}\:\mathrm{of}\:\mathrm{semicircle}\:, \\ $$$$\mathrm{radius}\:\mathrm{and}\:\mathrm{circumference}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{be}\:\mathrm{r}_{\mathrm{s}} \:\mathrm{and}\:\mathrm{c}_{\mathrm{s},} \: \\ $$$$\mathrm{r}\:\mathrm{and}\:\mathrm{c}\:\mathrm{respectively}. \\ $$$$\mathrm{c}_{\mathrm{s}}…

Eucleadian-Space-R-2-and-Subset-A-A-x-y-R-2-x-2-y-2-1-B-t-1-t-cos-t-t-1-t-sin-t-R-2-1-t-R-Show-that-X-A-B-is-Connect-set-

Question Number 220588 by SdC355 last updated on 16/May/25 $$\mathrm{Eucleadian}\:\mathrm{Space}\:\mathbb{R}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{Subset}\:{A} \\ $$$${A}=\left\{\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} \mid{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\right\},\:{B}=\left\{\left(\frac{{t}−\mathrm{1}}{{t}}\:\mathrm{cos}\left({t}\right),\frac{{t}−\mathrm{1}}{{t}}\mathrm{sin}\left({t}\right)\right)\in\mathbb{R}^{\mathrm{2}} \mid\mathrm{1}\leq{t}\in\mathbb{R}\right\} \\ $$$$\mathrm{Show}\:\mathrm{that}\:{X}={A}\cup{B}\:\mathrm{is}\:\mathrm{Connect}\:\mathrm{set} \\ $$ Commented by SdC355 last…