Menu Close

Author: Tinku Tara

0-1-6x-1-x-x-1-x-2-1-ln-x-1-dx-

Question Number 220469 by Nicholas666 last updated on 13/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{\mathrm{6}{x}\left(\mathrm{1}\:−\:{x}\right)}{\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:\mathrm{ln}\:\left({x}\:+\:\mathrm{1}\right)}\:{dx} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact:…

Question-220495

Question Number 220495 by Jubr last updated on 13/May/25 Commented by mr W last updated on 14/May/25 $${i}\:{guess}\:{even}\:{you}\:{also}\:{don}'{t}\:{know} \\ $$$${what}\:{the}\:{question}\:{means}\:{with}\:{all} \\ $$$${the}\:{arrows}.\:{when}\:{the}\:{question}\:{is} \\ $$$${unclear},\:{it}\:{can}\:{not}\:{be}\:{solved}.\:{so} \\…

z-C-and-gt-0-Then-prove-that-z-2-z-z-3-3-i-2-

Question Number 220486 by hardmath last updated on 13/May/25 $$\mathrm{z}\:\in\:\mathbb{C}\:\:\:\mathrm{and}\:\:\:\lambda\:>\:\mathrm{0} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mid\mathrm{z}\:+\:\mathrm{2}\lambda\mid\:+\:\mid\mathrm{z}\:+\:\lambda\mid\:\geqslant\:\mid\mathrm{z}\:+\:\frac{\mathrm{3}\lambda\:−\:\lambda\sqrt{\mathrm{3}}\mathrm{i}}{\mathrm{2}}\mid \\ $$ Commented by MrGaster last updated on 14/May/25 The original problem is equivalent to: In a plane, the sum of the distances from any point to two vertices of an equilateral triangle is greater than the distance from that point to the third vertex. This can be easily proven. Then Ptolemy's theorem can be applied. Commented…

Can-you-guys-teach-me-about-Weber-function-E-z-and-Anger-function-J-z-Let-s-Consider-n-dimensional-Euclidean-Space-and-function-f-f-R-n-R-Helmholtz-Equation-defined-as-2-k-2-f-0-an

Question Number 220480 by SdC355 last updated on 13/May/25 $$\mathrm{Can}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{teach}\:\mathrm{me}\:\mathrm{about} \\ $$$$\mathrm{Weber}\:\mathrm{function}\:\boldsymbol{\mathrm{E}}_{\nu} \left({z}\right)\:\mathrm{and}\:\mathrm{Anger}\:\mathrm{function}\:\boldsymbol{\mathrm{J}}_{\nu} \left({z}\right)?? \\ $$$$\: \\ $$$$\mathrm{Let}'\mathrm{s}\:\mathrm{Consider}\:{n}-\mathrm{dimensional}\:\mathrm{Euclidean}\:\mathrm{Space} \\ $$$$\mathrm{and}\:\mathrm{function}\:{f}\:,\:{f};\mathbb{R}^{{n}} \rightarrow\mathbb{R} \\ $$$$\mathrm{Helmholt}{z}\:\mathrm{Equation}\:\mathrm{defined}\:\mathrm{as} \\ $$$$\left(\bigtriangledown^{\mathrm{2}}…