Menu Close

Author: Tinku Tara

Question-220321

Question Number 220321 by SdC355 last updated on 11/May/25 Commented by MathematicalUser2357 last updated on 11/May/25 한국인이세요? 대답하실거면 제 댓글 위에 있는 점 세 개를 누르고 Plain Text Comment 이라는 버튼을 눌러서 대답해 주세요 Commented by SdC355 last updated on 11/May/25 네 한국인이요 ㅋㅋㅋ방가요…

Q1-x-y-x-2-y-2-1-1-2-x-dy-y-dy-Q2-S-R-2-R-3-S-u-v-rsin-u-cos-v-e-1-rsin-u-sin-v-e-2-rcos-u-e-3-F-R-3-R-3-F-x-y-z-x-x-2-y-2-z-2-e-1-

Question Number 220323 by SdC355 last updated on 11/May/25 $$\mathrm{Q1}.\:\boldsymbol{\Omega};=\left\{\left({x},{y}\right);{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leq\mathrm{1}\right\} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:\oint_{\:\partial\boldsymbol{\Omega}} \:{x}\centerdot\mathrm{d}{y}−{y}\centerdot\mathrm{d}{y}=?? \\ $$$$\mathrm{Q2}.\:\boldsymbol{\mathcal{S}};\:\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}^{\mathrm{3}} \\ $$$$\boldsymbol{\mathcal{S}}\left({u},{v}\right)={r}\mathrm{sin}\left({u}\right)\mathrm{cos}\left({v}\right)\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +{r}\mathrm{sin}\left({u}\right)\mathrm{sin}\left({v}\right)\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} +{r}\mathrm{cos}\left({u}\right)\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{3}}…