Question Number 220184 by MathematicalUser2357 last updated on 07/May/25 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{12}}} \sqrt{\frac{\mathrm{sec}^{\mathrm{4}} \alpha+\mathrm{5sec}^{\mathrm{5}} \alpha\mathrm{sin}\:\alpha}{\left(\mathrm{2}−\mathrm{sec}^{\mathrm{2}} \alpha\right)\left(\mathrm{125tan}^{\mathrm{3}} \alpha+\mathrm{25tan}^{\mathrm{2}} \alpha+\mathrm{5tan}\:\alpha+\mathrm{1}\right)}}{d}\alpha \\ $$ Answered by MathematicalUser2357 last updated on…
Question Number 220181 by SdC355 last updated on 07/May/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 220176 by Nicholas666 last updated on 07/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\frac{{dx}}{\mathrm{1}\:+\:{x}^{\mathrm{7}} }\: \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 220177 by SdC355 last updated on 07/May/25 $$\int_{−\mathrm{1}} ^{\:\mathrm{0}} \:\:\mathrm{cos}\left(\frac{\mathrm{ln}\left({z}+\mathrm{1}\right)}{{z}}\right)\:\mathrm{d}{z} \\ $$ Answered by MathematicalUser2357 last updated on 11/May/25 $$\mathrm{cos}\left(\frac{\mathrm{ln}\left({z}+\mathrm{1}\right)}{{z}}\right) \\ $$$$=\mathrm{0}.\mathrm{183457}+\mathrm{1}.\mathrm{20658}\left({z}−\mathrm{0}.\mathrm{5}\right)−\mathrm{3}.\mathrm{31429}\left({z}−\mathrm{0}.\mathrm{5}\right)^{\mathrm{2}} +\mathrm{13}.\mathrm{4993}\left({z}−\mathrm{0}.\mathrm{5}\right)^{\mathrm{3}}…
Question Number 220178 by SdC355 last updated on 07/May/25 $$\mathrm{evaluate} \\ $$$$\int_{{w}} ^{\:\infty} \:\frac{{e}^{{s}} \centerdot\boldsymbol{\Gamma}\left(\mathrm{0},{s}\right)}{{s}}\mathrm{d}{s} \\ $$ Answered by MathematicalUser2357 last updated on 11/May/25 $$\mathrm{I}'\mathrm{m}\:\mathrm{sorry},\:\mathrm{but}\:\mathrm{recheck}\:\mathrm{the}\:\mathrm{integrand}.…
Question Number 220179 by SdC355 last updated on 07/May/25 $$\int\:\:\:\frac{\mathrm{d}{s}}{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} } \\ $$ Answered by Ghisom last updated on 07/May/25 $$=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{\nu} }{{v}}+{C}…
Question Number 220200 by Hery03 last updated on 07/May/25 $$ \\ $$$$\int_{\mathrm{1}} ^{\:\alpha} \frac{\left({x}\:−\:\mathrm{1}\right)^{{n}} }{{e}^{{x}} \:−\:{x}\:−\:\mathrm{1}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 220198 by SdC355 last updated on 07/May/25 Commented by SdC355 last updated on 08/May/25 $$\mathrm{i}\:\mathrm{already}\:\mathrm{know}\:\mathrm{and}\:\mathrm{understand}\:\mathrm{about}\:\:\mathrm{operator}\:\overset{\rightarrow} {\bigtriangledown}×\overset{\rightarrow} {\boldsymbol{\mathrm{F}}} \\ $$$$\overset{\rightarrow} {\bigtriangledown}×\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}=\begin{vmatrix}{\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} }&{\overset{\rightarrow}…
Question Number 220192 by cherokeesay last updated on 07/May/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 220193 by behi834171 last updated on 07/May/25 $$\:\:\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{8}} =\mathrm{21}\boldsymbol{{x}}+\mathrm{13}\:\:\:\:\:\:\:\:\:\:;\:\:\:\:\boldsymbol{{x}}\in{R} \\ $$$$\:\:\:\:\boldsymbol{{x}}=? \\ $$ Answered by SdC355 last updated on 07/May/25 $$\:{f}\left({z}\right)={z}^{\mathrm{8}} −\mathrm{21}{z}−\mathrm{13} \\…