Menu Close

Author: Tinku Tara

what-is-lim-n-1-1-n-a-m-a-a-a-a-m-times-aka-Knuth-s-up-notation-

Question Number 219887 by SdC355 last updated on 03/May/25 $$\mathrm{what}\:\mathrm{is}\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\uparrow\uparrow^{\infty} =?? \\ $$$${a}\uparrow\uparrow^{{m}} =\underset{{m}\:\mathrm{times}} {\underbrace{{a}^{{a}^{{a}^{{a}^{\iddots} } } } }}\:\:\left(\mathrm{aka}\:\mathrm{Knuth}'\mathrm{s}\:\mathrm{up}\:\mathrm{notation}\right) \\ $$ Answered…

Let-f-n-1-n-n-n-1-be-a-continuous-function-Such-that-n-1-n-1-xf-x-dx-nf-n-n-1-f-n-1-Then-prove-n-1-n-dx-f-x-2-n-1-n-N-

Question Number 219940 by hardmath last updated on 03/May/25 $$\mathrm{Let}: \\ $$$$\mathrm{f}\::\:\left[\mathrm{n}−\mathrm{1}\:,\:\mathrm{n}\right]\:\rightarrow\:\left[\mathrm{n}\:,\:\mathrm{n}\:+\:\mathrm{1}\right] \\ $$$$\mathrm{be}\:\mathrm{a}\:\mathrm{continuous}\:\mathrm{function} \\ $$$$\mathrm{Such}\:\mathrm{that}: \\ $$$$\int_{\boldsymbol{\mathrm{n}}−\mathrm{1}} ^{\:\boldsymbol{\mathrm{n}}} \left(\mathrm{1}\:+\:\mathrm{xf}\:^{'} \left(\mathrm{x}\right)\right)\mathrm{dx}\:\leqslant\:\mathrm{nf}\left(\mathrm{n}\right)−\left(\mathrm{n}−\mathrm{1}\right)\mathrm{f}\left(\mathrm{n}−\mathrm{1}\right) \\ $$$$\mathrm{Then}\:\mathrm{prove}: \\ $$$$\int_{\boldsymbol{\mathrm{n}}−\mathrm{1}}…

Question-219879

Question Number 219879 by fantastic last updated on 03/May/25 Answered by A5T last updated on 03/May/25 $$\mathrm{Let}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rectngle}\:\mathrm{be}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}. \\ $$$$\sqrt{\left(\mathrm{1}.\mathrm{5}+\mathrm{2}\right)^{\mathrm{2}} −\left(\mathrm{a}−\mathrm{1}.\mathrm{5}−\mathrm{2}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{3}+\mathrm{2}\right)^{\mathrm{2}} −\left(\mathrm{a}−\mathrm{3}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$=\mathrm{b}−\mathrm{1}.\mathrm{5}−\mathrm{3}…

Prove-that-n-IN-n-1-n-ln-t-dt-ln-n-1-2-

Question Number 219936 by Razafitiana last updated on 04/May/25 $$\mathrm{Prove}\:\mathrm{that}:\forall\mathrm{n}\in\mathrm{IN} \\ $$$$\underset{\:\mathrm{n}} {\int}^{\:\mathrm{n}+\mathrm{1}} \mathrm{ln}\left(\mathrm{t}\right)\mathrm{dt}\leqslant\mathrm{ln}\left(\mathrm{n}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$ Answered by MrGaster last updated on 04/May/25 $$\underset{\:\mathrm{n}} {\int}^{\:\mathrm{n}+\mathrm{1}}…

prove-Y-3-2-z-dz-4sin-z-z-1-2-iz-iz-z-1-2-iz-iz-2piz-C-

Question Number 219872 by SdC355 last updated on 03/May/25 $$\mathrm{prove} \\ $$$$\int\:\:{Y}_{−\frac{\mathrm{3}}{\mathrm{2}}} \left({z}\right)\:\mathrm{d}{z}=\frac{\mathrm{4sin}\left({z}\right)+\frac{{z}\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}},−\boldsymbol{{i}}{z}\right)}{\:\sqrt{−\boldsymbol{{i}}{z}}}+\frac{{z}\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}},\boldsymbol{{i}}{z}\right)}{\:\sqrt{\boldsymbol{{i}}{z}}}}{\:\sqrt{\mathrm{2}\pi{z}}}+{C} \\ $$ Answered by MrGaster last updated on 03/May/25 $${Y}_{−\nu} =\left(−\mathrm{1}\right)^{\nu} {Y}_{\nu}…