Question Number 219833 by hardmath last updated on 02/May/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219831 by SdC355 last updated on 02/May/25 $$\mathrm{prove} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{g}\left({z}+{h}\right)}{\mathrm{g}\left({z}\right)}\right)^{\frac{\mathrm{1}}{{h}}} ={e}^{\frac{\mathrm{d}\:\:}{\mathrm{d}{z}}\:\mathrm{ln}\:\left(\mathrm{g}\left({z}\right)\right)} ={e}^{\frac{\mathrm{g}^{\left(\mathrm{1}\right)} \left({z}\right)}{\mathrm{g}\left({z}\right)}} \\ $$ Answered by MrGaster last updated on 04/May/25…
Question Number 219868 by Nicholas666 last updated on 02/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}; \\ $$$$\:\:\:\:\frac{{d}}{{dx}}\:\left(\frac{\mathrm{sin}^{\:\mathrm{2}} {x}}{\mathrm{1}+\mathrm{cot}\:{x}}\:+\:\frac{\mathrm{cos}^{\:\mathrm{2}} {x}}{\mathrm{1}+\mathrm{tan}\:{x}}\right)\:=\:−\mathrm{cos}\:\mathrm{2}{x}\:\:\:\: \\ $$$$ \\ $$ Answered by MrGaster last updated…
Question Number 219869 by universe last updated on 02/May/25 Answered by MrGaster last updated on 03/May/25 Commented by MrGaster last updated on 03/May/25 Original text:\[ \begin{aligned} &\text{Solution:}\\ &\text{Let the equation of the circle be}C:x^2+y^2=n^2\left(2-\frac{2}{\sqrt{n}}+\frac{1}{n}\right).\text{As}n\to\infty,\text{the radius}R\sim n\sqrt{2}.\\ &\text{For a lattice line}l:ax+by+c=0,\text{its distance to the origin is}\frac{|c|}{\sqrt{a^2+b^2}}=R,\text{i.e.,}|c|=R\sqrt{a^2+b^2}.\\ &\text{Since}R\sim n\sqrt{2},\text{for sufficiently large}n,\text{we have}|c|\sim n\sqrt{2(a^2+b^2)}.\\ &\text{Consider that the line}l\text{must pass through at least two lattice points}(x_1,y_1),(x_2,y_2)\in S_n.\text{Their parameters satisfy:}\\ &\text{(1)The slope}m=\frac{y_2-y_1}{x_2-x_1}\text{is a rational number,and the intercept}c=y_1-mx_1\text{is an integer combination.}\\ &\text{(2)The intercept range is limited by}0\leq y_1,y_2\leq n,\text{so the upper bound of}|c|\text{is}O(n).\\ &\text{As}n\to\infty,\sqrt{a^2+b^2}\sim\sqrt{m^2+1}\text{(let}m=\frac{b}{a}\text{)},\text{then}|c|\sim n\sqrt{2(m^2+1)}.\\ &\text{However,the allowed range of}|c|\text{is}O(n),\text{so we need}\sqrt{2(m^2+1)}\leq 1,\text{i.e.,}m^2\leq\frac{1}{2}-1,\text{which has no real solutions.}\\ &\text{Therefore,the number of tangent lines}N{\text{tangent}}=o(N{\text{total}}).\\ &\text{The total number of lines}N{\text{total}}\sim\frac{3}{\pi^2}n^4\text{(based on the asymptotic estimate of lattice lines)},\text{and the number of tangent lines}N{\text{tangent}}\sim O(n^2)\text{(only a limited number of directions satisfy the intercept condition)}.\\ &\text{Thus,the probability}P_n=\frac{N{\text{tangent}}}{N{\text{total}}}\sim\frac{O(n^2)}{n^4}\to 0.\\ &\text{The final limit is:}\\ &\boxed{A} \end{aligned} \] Terms…
Question Number 219806 by SdC355 last updated on 02/May/25 $$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\left(\frac{\mathrm{cos}\left({x}+{h}\right)}{\mathrm{cos}\left({x}\right)}\right)^{\frac{\mathrm{1}}{{h}}} =?? \\ $$ Answered by fantastic last updated on 02/May/25 $${cos}\left({y}\right)^{\underset{{y}} {\mathrm{1}}} \\ $$…
Question Number 219864 by Nicholas666 last updated on 02/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}; \\ $$$$\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{x}^{\:{n}+\mathrm{1}} }{{x}+\mathrm{1}}\:{dx}\:<\:\frac{\mathrm{1}}{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$$ \\ $$ Answered by MrGaster last…
Question Number 219800 by SdC355 last updated on 02/May/25 $${y}^{\left(\mathrm{2}\right)} \left({t}\right)=\left(\mathrm{1}−{e}^{{t}} \right){y}\left({t}\right)+{y}^{\left(\mathrm{1}\right)} \left({t}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219865 by Nicholas666 last updated on 02/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:{ln}\Gamma\left({x}\right){dx}\:=\:{ln}\:\sqrt{\mathrm{2}\pi} \\ $$$$ \\ $$ Answered by MrGaster last updated…
Question Number 219801 by SdC355 last updated on 02/May/25 $$\underset{{h}\rightarrow\infty} {\mathrm{lim}}\:{h}^{\nu} {J}_{\nu} \left({h}\right)=?? \\ $$ Answered by MrGaster last updated on 02/May/25 $$\mathrm{lim}_{{h}\rightarrow\infty} \:{h}^{\nu} {J}_{\nu}…
Question Number 219866 by Nicholas666 last updated on 02/May/25 $$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}; \\ $$$$\:\:\:\:\:\underset{\:\mathrm{0}} {\int}^{\:\pi/\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}{x}−\mathrm{1}} \theta\:\mathrm{cos}\:^{\mathrm{2}{y}−\mathrm{1}} \theta\:{d}\theta\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\Gamma\left({x}\right)\Gamma\left({y}\right)}{\Gamma\left({x}\right)+\Gamma\left({y}\right)}\:\:\:\:\: \\ $$$$\: \\ $$ Answered by MrGaster…