Question Number 219796 by SdC355 last updated on 02/May/25 $$\mathrm{Solve} \\ $$$${y}^{\left(\mathrm{2}\right)} \left({t}\right)=\left({y}\left({t}\right)\right)^{\mathrm{2}} −{ay}^{\left(\mathrm{1}\right)} \left({t}\right)−{by}\left({t}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219797 by SdC355 last updated on 02/May/25 $$\mathrm{solve} \\ $$$$\left({y}^{\left(\mathrm{2}\right)} \left({t}\right)\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{1}+{y}\left({t}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219798 by SdC355 last updated on 02/May/25 $$\mathrm{solve}\: \\ $$$${y}^{\left(\mathrm{2}\right)} \left({t}\right)={y}^{\left(\mathrm{1}\right)} \left({t}\right){e}^{−{y}\left({t}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219863 by Nicholas666 last updated on 02/May/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}; \\ $$$$\underset{\:\mathrm{0}} {\int}^{\:\infty} \:\frac{{ln}\:{x}}{{x}^{\mathrm{3}} +\:{x}\sqrt{{x}}\:+\:\mathrm{1}}\:{dx}\:=\:−\frac{\mathrm{32}\pi}{\mathrm{81}}{sin}\frac{\pi}{\mathrm{18}}\:\:\:\: \\ $$$$ \\ $$ Answered by MrGaster last…
Question Number 219799 by SdC355 last updated on 02/May/25 $${y}^{\left(\mathrm{2}\right)} \left({t}\right)+{y}\left({t}\right)=\mathrm{cos}\left({t}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219792 by SdC355 last updated on 02/May/25 $$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:\frac{{J}_{\mathrm{1}} \left({z}\right)}{{Y}_{\mathrm{0}} \left({z}\right)} \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{z}\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{z}^{\mathrm{2}} −\mathrm{cos}\left(\frac{{z}}{\mathrm{1}−{z}^{\mathrm{2}} }\right)}{{z}^{\mathrm{4}} } \\ $$$$\underset{{z}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{J}_{\nu} \left({z}+{h}\right){Y}_{\nu} \left({z}\right)−{J}_{\nu} \left({z}\right){Y}_{\nu}…
Question Number 219793 by SdC355 last updated on 02/May/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{e}^{−{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t}=? \\ $$ Answered by breniam last updated on 03/May/25 $$\underset{\mathrm{0}} {\overset{\infty}…
Question Number 219794 by SdC355 last updated on 02/May/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{Y}_{\mathrm{0}} \left({t}\right){e}^{−\mathrm{3}{t}} }{{t}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{t} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219795 by SdC355 last updated on 02/May/25 $$\int_{\mathcal{D}=\left[\mathrm{0},\mathrm{1}\right]^{{N}} } \:\underset{{h}=\mathrm{1}} {\overset{{N}} {\prod}}\:{e}^{−\frac{\mathrm{1}}{\mathrm{2}}{x}_{{h}} } \mathrm{d}{x}_{{h}} \\ $$ Answered by MrGaster last updated on 02/May/25…
Question Number 219853 by hardmath last updated on 02/May/25 $$\mathrm{If}\:\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\int_{\boldsymbol{\mathrm{a}}} ^{\:\boldsymbol{\mathrm{b}}} \left(\mathrm{sinx}\right)^{\mathrm{2}\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\centerdot\:\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{x}\right)^{\mathrm{1}−\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:\geqslant\:\frac{\mathrm{b}−\mathrm{a}}{\mathrm{2}} \\ $$ Answered by…