Question Number 219634 by Nicholas666 last updated on 29/Apr/25 Answered by MrGaster last updated on 01/May/25
Question Number 219570 by Rojarani last updated on 29/Apr/25 $$\:\mathrm{8}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} =\mathrm{36}\left({x}+{y}\right),\: \\ $$$$\:\:{x},{y}\in{R},\:{find}\:{maximum}\:\left({x}+{y}\right) \\ $$$$\: \\ $$ Answered by SdC355 last updated on 29/Apr/25…
Question Number 219571 by SdC355 last updated on 29/Apr/25 $$\mathrm{pls}\:\mathrm{Help}…..! \\ $$$$\mathrm{prove} \\ $$$$\int\int_{\:\boldsymbol{\mathcal{S}}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{g}}}\centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}=\mathrm{0}\:\leftrightarrows\:\mathrm{div}\:\overset{\rightarrow} {\boldsymbol{\mathrm{g}}}=\mathrm{0} \\ $$ Answered by aleks041103 last updated…
Question Number 219624 by Nicholas666 last updated on 29/Apr/25 Answered by A5T last updated on 29/Apr/25 $$\Sigma\mathrm{a}\sqrt{\mathrm{a}^{\mathrm{3}} +\mathrm{15}}\leqslant\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} }\sqrt{\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} +\mathrm{d}^{\mathrm{3}}…
Question Number 219625 by Nicholas666 last updated on 29/Apr/25 $$ \\ $$$$\:\mathrm{Determine}\:\mathrm{all}\:\mathrm{real}\:\mathrm{numbers}\:{x}\: \\ $$$$\:\:\:\mathrm{that}\:\mathrm{statisfy}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}; \\ $$$$\:\:\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}+\sqrt{{x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}}\:\leqslant\:\sqrt{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{4}\right)}\:+\:\mid{x}\mid\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}\:\:\:\:\:\: \\ $$$$ \\…
Question Number 219620 by Nicholas666 last updated on 29/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{Prove};\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{50}{x}^{\mathrm{8}} }{{x}^{\mathrm{20}} +\mathrm{2}{x}^{\mathrm{10}} +\mathrm{1}}\:{dx}\:=\:\phi\pi \\ $$$$ \\ $$ Answered by…
Question Number 219621 by ajfour last updated on 29/Apr/25 Commented by ajfour last updated on 29/Apr/25 $${Correction}:\:{A}\left(\mathrm{0},{k}^{\mathrm{2}} \right) \\ $$$${Find}\:{r}\:{in}\:{terms}\:{of}\:{k}. \\ $$ Answered by mr…
Question Number 219617 by Ghisom last updated on 29/Apr/25 $$\mathrm{ok},\:\mathrm{let}'\mathrm{s}\:\mathrm{all}\:\mathrm{answer}\:\mathrm{questions}\:\mathrm{from}\:\mathrm{anywhere} \\ $$$$\mathrm{on}\:\mathrm{the}\:{www}\:\mathrm{using}\:\mathrm{the}\:\mathrm{given}\:\mathrm{results}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{sources}\:\mathrm{or}\:{wolframalpha}\:\mathrm{or}\:\mathrm{any}\:\mathrm{AI} \\ $$$$\mathrm{available}.\:\mathrm{this}\:\mathrm{promises}\:\mathrm{great}\:\mathrm{fun}! \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219618 by Nicholas666 last updated on 29/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:{Prove}; \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{{ln}\:{ln}\:\frac{\mathrm{1}}{{x}}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\:{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left({ln}\left(\frac{\pi}{\mathrm{2}}\right)−\gamma\right) \\ $$$$ \\ $$ Terms of Service Privacy…
Question Number 219619 by Nicholas666 last updated on 29/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \left({x}^{\mathrm{2}} +\mathrm{1}\right)^{−\mathrm{1}/\mathrm{2}} {dx} \\ $$$$ \\ $$ Answered by Ghisom last updated…