Menu Close

Author: Tinku Tara

Question-219550

Question Number 219550 by Spillover last updated on 28/Apr/25 Answered by Nicholas666 last updated on 29/Apr/25 $${I}=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{7}} \right){ln}\left(\mathrm{1}+{x}^{\mathrm{3}} \right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right){lnx}}{dx}\:\:\:\:\:\:\: \\ $$$${I}\left({a}\right)=\int_{\mathrm{0}} ^{\:\infty}…

Question-219540

Question Number 219540 by BaliramKumar last updated on 28/Apr/25 Answered by som(math1967) last updated on 28/Apr/25 $${CD}^{\mathrm{2}} +{BC}^{\mathrm{2}} =\mathrm{2}×\left\{\left(\frac{\mathrm{25}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{39}}{\mathrm{2}}\right)^{\mathrm{2}} \right\} \\ $$$$\:{CD}=\sqrt{\mathrm{289}}=\mathrm{17} \\ $$$${Ar}\:\bigtriangleup{BCD}=\sqrt{\mathrm{42}\left(\mathrm{42}−\mathrm{28}\right)\left(\mathrm{42}−\mathrm{17}\right)\left(\mathrm{42}−\mathrm{39}\right)}…

solve-for-real-numbers-xy-x-3-y-3-yz-y-3-z-3-zx-z-3-x-3-xy-x-y-yz-y-z-zx-z-x-55-x-3-y-3-z-3-99-xy-x-3-y-3-yz-y-3-z-3-zx-z-3-x-3-xy-x-2-y-2-yz

Question Number 219564 by hardmath last updated on 28/Apr/25 $$\mathrm{solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\frac{\mathrm{xy}\left(\mathrm{x}^{\mathrm{3}} −\mathrm{y}^{\mathrm{3}} \right)+\mathrm{yz}\left(\mathrm{y}^{\mathrm{3}} −\mathrm{z}^{\mathrm{3}} \right)+\mathrm{zx}\left(\mathrm{z}^{\mathrm{3}} −\mathrm{x}^{\mathrm{3}} \right)}{\mathrm{xy}\left(\mathrm{x}−\mathrm{y}\right)+\mathrm{yz}\left(\mathrm{y}−\mathrm{z}\right)+\mathrm{zx}\left(\mathrm{z}−\mathrm{x}\right)}\:=\:\mathrm{55}}\\{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \:=\:\mathrm{99}}\\{\frac{\mathrm{xy}\left(\mathrm{x}^{\mathrm{3}} −\mathrm{y}^{\mathrm{3}} \right)+\mathrm{yz}\left(\mathrm{y}^{\mathrm{3}} −\mathrm{z}^{\mathrm{3}} \right)+\mathrm{zx}\left(\mathrm{z}^{\mathrm{3}}…

let-be-the-sequence-x-n-n-1-defined-by-x-1-1-x-n-2-3x-n-1-x-n-n-N-find-L-lim-n-k-0-0-x-2k-1-x-k-x-k-1-1-n-

Question Number 219561 by hardmath last updated on 28/Apr/25 $$\mathrm{let}\:\mathrm{be}\:\mathrm{the}\:\mathrm{sequence}\:\:\:\left(\mathrm{x}_{\boldsymbol{\mathrm{n}}} \right)\mathrm{n}\:\geqslant\:\mathrm{1} \\ $$$$\mathrm{defined}\:\mathrm{by}\:\:\:\mathrm{x}_{\mathrm{1}} =\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}_{\boldsymbol{\mathrm{n}}+\mathrm{2}} \:=\:\mathrm{3x}_{\boldsymbol{\mathrm{n}}+\mathrm{1}} −\:\mathrm{x}_{\boldsymbol{\mathrm{n}}} \\ $$$$\forall\mathrm{n}\:\in\:\mathbb{N} \\ $$$$\mathrm{find}\:\:\:\boldsymbol{\mathrm{L}}\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\boldsymbol{\mathrm{n}}}]{\underset{\boldsymbol{\mathrm{k}}=\mathrm{0}} {\overset{\mathrm{0}} {\sum}}\:\:\frac{\mathrm{x}_{\mathrm{2}\boldsymbol{\mathrm{k}}+\mathrm{1}}…

prove-that-exists-X-M-2-3-R-Y-M-3-2-R-such-that-X-Y-1-1-1-1-Y-X-2-6-6-3-9-9-3-9-9-

Question Number 219562 by hardmath last updated on 28/Apr/25 $$\mathrm{prove}\:\mathrm{that}\:\mathrm{exists}\:\:\:\mathrm{X}\:\in\:\mathrm{M}_{\mathrm{2},\mathrm{3}} \:\left(\mathbb{R}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Y}\:\in\:\mathrm{M}_{\mathrm{3},\mathrm{2}} \:\left(\mathbb{R}\right) \\ $$$$\mathrm{such}\:\mathrm{that}\:\:\:\mathrm{X}\centerdot\mathrm{Y}\:=\:\begin{pmatrix}{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}\end{pmatrix}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Y}\centerdot\mathrm{X}\:=\:\begin{pmatrix}{\mathrm{2}}&{\mathrm{6}}&{\mathrm{6}}\\{\mathrm{3}}&{\mathrm{9}}&{\mathrm{9}}\\{-\mathrm{3}}&{-\mathrm{9}}&{-\mathrm{9}}\end{pmatrix}\: \\ $$ Answered by vnm last updated…

find-all-n-N-such-that-0-1-sinx-2n-2-cosx-2n-dx-1-4-1011-

Question Number 219563 by hardmath last updated on 28/Apr/25 $$\mathrm{find}\:\mathrm{all}\:\:\:\mathrm{n}\:\in\:\mathbb{N}^{\ast} \\ $$$$\mathrm{such}\:\mathrm{that}\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\left(\mathrm{sinx}\right)^{\mathrm{2n}−\mathrm{2}} \:\centerdot\:\left(\mathrm{cosx}\right)^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:\mathrm{dx}\:\geqslant\:\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{1011}} } \\ $$ Answered by Nicholas666 last updated on…

I-n-0-1-0-1-0-1-ln-1-x-1-x-2-x-n-1-x-1-1-x-2-1-x-n-dx-1-dx-2-dx-n-

Question Number 219553 by Nicholas666 last updated on 28/Apr/25 $$ \\ $$$$\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} ….\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{x}_{\mathrm{1}} {x}_{\mathrm{2}} \:….{x}_{{n}} \right)}{\left(\mathrm{1}−{x}_{\mathrm{1}} \right)\left(\mathrm{1}−{x}_{\mathrm{2}} \right)….\left(\mathrm{1}−{x}_{{n}\:} \right)}\:{dx}_{\mathrm{1}}…