Question Number 219554 by Nicholas666 last updated on 28/Apr/25 $$ \\ $$$$\:{I}_{{n}} =\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} …\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left({x}_{\mathrm{1}} {x}_{\mathrm{2}} …{x}_{{n}} \right)^{{a}} }{\left(\mathrm{1}−{x}_{\mathrm{1}} {x}_{\mathrm{2}} …{x}_{{n}}…
Question Number 219555 by Adamu3379 last updated on 28/Apr/25 $${p}=\:{number}\:{of}\:{responses}/{total}\:{number}\:{of}\:{responded} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219519 by OmoloyeMichael last updated on 27/Apr/25 $$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{laplace}}\:\boldsymbol{{transform}}\:\boldsymbol{{of}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \boldsymbol{{te}}^{−\mathrm{2}\boldsymbol{{t}}} \boldsymbol{{sintdt}} \\ $$ Answered by SdC355 last updated on 27/Apr/25 $$\mathrm{First}\:\mathrm{idea}..\mathrm{Let}'\mathrm{s}\:\mathrm{define}\:{F}\left({s}\right)\:\mathrm{as}\:…
Question Number 219515 by hardmath last updated on 27/Apr/25 $$\mathrm{Find}:\:\:\:\boldsymbol{\Omega}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{x}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\mathrm{dx}\:=\:?\: \\ $$ Answered by SdC355 last updated on 27/Apr/25 $$\mathrm{can}'\mathrm{t}\:\mathrm{Find}\:\mathrm{primitive}\:\mathrm{function}\:\int\:\centerdot\: \\…
Question Number 219509 by Nicholas666 last updated on 27/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{I}\:=\:\underset{\:\mathrm{1}} {\int}^{\:\mathrm{16}} \:\frac{\left({x}\:+\sqrt{{x}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} }{{x}^{\frac{\mathrm{3}}{\mathrm{4}}} }\:{dx} \\ $$$$ \\ $$ Answered by SdC355 last updated…
Question Number 219506 by PragyanKhunte last updated on 27/Apr/25 $${Q}.\:{Integrate}\:\frac{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} −{x}−\mathrm{3}}. \\ $$$$ \\ $$ Answered by SdC355 last updated on 27/Apr/25 $$ \\…
Question Number 219503 by Rojarani last updated on 27/Apr/25 Answered by Frix last updated on 27/Apr/25 $$\sqrt{\mathrm{4}{x}}+\sqrt{\mathrm{4}{x}−\mathrm{4}}+\sqrt{\mathrm{4}{x}−\mathrm{8}}=\sqrt{{x}+\mathrm{1}}+\sqrt{{x}+\mathrm{5}}+\sqrt{{x}+\mathrm{9}} \\ $$$$\sqrt{\mathrm{4}{x}}=\sqrt{{x}+\mathrm{9}}\:\Rightarrow\:{x}=\mathrm{3} \\ $$$$\sqrt{\mathrm{4}{x}−\mathrm{4}}=\sqrt{{x}+\mathrm{5}}\:\Rightarrow\:{x}=\mathrm{3} \\ $$$$\sqrt{\mathrm{4}{x}−\mathrm{8}}=\sqrt{{x}+\mathrm{1}}\:\Rightarrow\:{x}=\mathrm{3} \\ $$…
Question Number 219496 by SdC355 last updated on 27/Apr/25 $${p}\left({t}\right)=−\frac{\mathrm{1}}{\boldsymbol{{i}}\pi}\int_{−\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} ^{\:\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} \:\:\frac{{e}^{{st}} \left(\mathrm{ln}\left({s}\right)+\boldsymbol{\gamma}_{\mathrm{0}} \right)}{{s}}\:\mathrm{d}{s} \\ $$$${q}\left({t}\right)=\frac{\mathrm{1}}{\boldsymbol{{i}}\pi}\int_{−\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} ^{\:\:\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} \:\left\{−\frac{\pi}{\mathrm{2}{s}}\boldsymbol{\mathrm{L}}_{\mathrm{0}} \left({s}\right)+\frac{\pi}{\mathrm{2}{s}}\boldsymbol{{i}}{Y}_{\mathrm{0}} \left(−\boldsymbol{{i}}{s}\right)\right\}{e}^{{st}} \:\mathrm{d}{s} \\ $$$$\mathrm{g}\left({s}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\:{J}_{\nu}…
Question Number 219529 by Nicholas666 last updated on 27/Apr/25 $$ \\ $$$$\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\:\:\:\frac{\mathrm{1}+{x}−{x}^{\mathrm{2}} +{x}^{\mathrm{3}} −{x}^{\mathrm{4}} −{x}^{\mathrm{5}} }{\mathrm{1}−{x}^{\mathrm{7}} }\:\:\:{dx} \\ $$$$ \\ $$ Commented by…
Question Number 219527 by mr W last updated on 27/Apr/25 Commented by Nicholas666 last updated on 27/Apr/25 $$\frac{\mathrm{1}}{\mathrm{48019}} \\ $$$$ \\ $$ Commented by mr…