Menu Close

Author: Tinku Tara

find-the-laplace-transform-of-f-t-0-t-sint-t-dt-

Question Number 219520 by OmoloyeMichael last updated on 27/Apr/25 $$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{laplace}}\:\boldsymbol{{transform}}\:\boldsymbol{{of}} \\ $$$$\boldsymbol{{f}}\left(\boldsymbol{{t}}\right)=\int_{\mathrm{0}} ^{\boldsymbol{{t}}} \frac{\boldsymbol{{sint}}}{\boldsymbol{{t}}}\boldsymbol{{dt}} \\ $$ Answered by SdC355 last updated on 27/Apr/25 $$\int_{\mathrm{0}} ^{\:{T}}…

Question-219486

Question Number 219486 by OmoloyeMichael last updated on 26/Apr/25 Commented by OmoloyeMichael last updated on 26/Apr/25 $$\boldsymbol{{please}}\:\boldsymbol{{help}}\:\boldsymbol{{me}}\:\boldsymbol{{with}}\:\boldsymbol{{question}}\:\mathrm{4} \\ $$ Terms of Service Privacy Policy Contact:…

pls-Help-1-1-ipi-i-0-i-0-e-st-ln-t-t-dt-2-0-t-J-t-J-rt-dt-3-0-t-cos-t-J-rt-dt-

Question Number 219481 by SdC355 last updated on 26/Apr/25 $$\mathrm{pls}\:\mathrm{Help}…. \\ $$$$\mathrm{1}.\:−\frac{\mathrm{1}}{\boldsymbol{{i}}\pi}\:\int_{\:−\infty+\boldsymbol{{i}\zeta}_{\mathrm{0}} } ^{\:\infty+\boldsymbol{{i}\zeta}_{\mathrm{0}} } \:\frac{{e}^{{st}} \left(\mathrm{ln}\left({t}\right)+\boldsymbol{\gamma}\right)}{{t}}\:\mathrm{d}{t}\: \\ $$$$\mathrm{2}.\:\int_{\mathrm{0}} ^{\:\infty} \:\:{t}\centerdot{J}_{\nu} \left({t}\right){J}_{\nu} \left({rt}\right)\:\mathrm{d}{t} \\ $$$$\mathrm{3}.\:\int_{\mathrm{0}}…

let-a-1-1-n-1-a-n-1-na-n-2n-3-find-nth-term-of-a-n-

Question Number 219476 by universe last updated on 26/Apr/25 $$\:\mathrm{let}\:\mathrm{a}_{\mathrm{1}} \:=\:\mathrm{1}\:;\:\left(\mathrm{n}+\mathrm{1}\right)\mathrm{a}_{\mathrm{n}+\mathrm{1}} +\mathrm{na}_{\mathrm{n}} \:=\:\mathrm{2n}−\mathrm{3}\: \\ $$$$\:\:\mathrm{find}\:\:\mathrm{nth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{a}_{\mathrm{n}\:} \\ $$ Commented by universe last updated on 26/Apr/25 $${yes}\:{sir}\:…

prove-0-r-2-t-2-e-pt-dt-rpiL-1-rp-pirI-1-up-2irK-1-rp-2p-L-x-is-Modified-Struve-function-I-x-is-Modified-Bessel-function-of-the-First-kind-K-x-is-Modified-Bes

Question Number 219465 by SdC355 last updated on 26/Apr/25 $${prove} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\:\sqrt{{r}^{\mathrm{2}} −{t}^{\mathrm{2}} }{e}^{−{pt}} \mathrm{d}{t}=\frac{−{r}\pi\boldsymbol{\mathrm{L}}_{\mathrm{1}} \left({rp}\right)+\pi{rI}_{\mathrm{1}} \left({up}\right)+\mathrm{2}\boldsymbol{{i}}{rK}_{\mathrm{1}} \left({rp}\right)}{\mathrm{2}{p}} \\ $$$$\boldsymbol{\mathrm{L}}_{\nu} \left({x}\right)\:\mathrm{is}\:\mathrm{Modified}\:\mathrm{Struve}\:\mathrm{function} \\ $$$${I}_{\nu}…

solve-the-initial-value-problem-y-2e-t-2-2ty-0-y-0-1-

Question Number 219488 by OmoloyeMichael last updated on 26/Apr/25 $$\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{initial}}\:\boldsymbol{{value}}\:\boldsymbol{{problem}}\: \\ $$$$\boldsymbol{{y}}'−\mathrm{2}\boldsymbol{{e}}^{−\boldsymbol{{t}}^{\mathrm{2}} } +\mathrm{2}\boldsymbol{{ty}}=\mathrm{0}\:\:\boldsymbol{{y}}\left(\mathrm{0}\right)=\mathrm{1} \\ $$ Answered by SdC355 last updated on 26/Apr/25 $$\frac{\mathrm{d}{y}}{\mathrm{d}{t}}+\mathrm{2}{ty}\left({t}\right)=\mathrm{2}{e}^{−{t}^{\mathrm{2}} }…