Menu Close

Author: Tinku Tara

Question-219423

Question Number 219423 by SdC355 last updated on 24/Apr/25 Answered by SdC355 last updated on 24/Apr/25 $$\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}\left({u},{v}\right)=\begin{cases}{\frac{\mathrm{5}}{\mathrm{4}}\left(\mathrm{1}−\frac{{v}}{\mathrm{2}\pi}\right)\mathrm{cos}\left(\mathrm{2}{v}\right)\left(\mathrm{1}+\mathrm{cos}\left({u}\right)\right)+\mathrm{cos}\left(\mathrm{2}{v}\right)}\\{\frac{\mathrm{5}}{\mathrm{4}}\left(\mathrm{1}−\frac{{v}}{\mathrm{2}\pi}\right)\mathrm{sin}\left(\mathrm{2}{v}\right)\left(\mathrm{1}+\mathrm{cos}\left({u}\right)\right)+\mathrm{sin}\left(\mathrm{2}{v}\right)}\\{\frac{\mathrm{10}{v}}{\mathrm{2}\pi}+\frac{\mathrm{5}}{\mathrm{4}}\left(\mathrm{1}−\frac{{v}}{\mathrm{2}\pi}\right)\mathrm{sin}\left({u}\right)}\end{cases} \\ $$$$\mathrm{0}\leq{u}\leq\mathrm{2}\pi\:,\:−\pi\leq{v}\leq\mathrm{2}\pi \\ $$$$\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\left({x},{y},{z}\right)=−{x}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} −{y}\overset{\rightarrow}…

given-the-recursive-a-n-define-by-setting-a-1-0-1-a-n-1-a-n-1-a-n-n-1-prove-that-1-lim-n-na-n-1-2-b-n-n-1-na-n-is-a-incresing-sequence-and

Question Number 219414 by universe last updated on 24/Apr/25 $$\:\:\:\mathrm{given}\:\mathrm{the}\:\mathrm{recursive}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}\:\mathrm{define}\:\mathrm{by}\:\mathrm{setting} \\ $$$$\:\:\mathrm{a}_{\mathrm{1}\:} \:\in\:\left(\mathrm{0},\mathrm{1}\right)\:\:\:,\:\:\:\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:=\:\mathrm{a}_{\mathrm{n}} \left(\mathrm{1}−\mathrm{a}_{\mathrm{n}} \right)\:\:\:,\:\mathrm{n}\geqslant\mathrm{1} \\ $$$$\:\:\mathrm{prove}\:\mathrm{that}\:\:\left(\mathrm{1}\right)\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{na}_{\mathrm{n}} =\:\mathrm{1} \\ $$$$\:\:\left(\mathrm{2}\right)\:\:\mathrm{b}_{\mathrm{n}} \:=\:\mathrm{n}\left(\mathrm{1}−\mathrm{na}_{\mathrm{n}} \right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{incresing}\:\mathrm{sequence}…

given-g-x-x-2023-x-1-find-gogogogogog-2024-

Question Number 219404 by golsendro last updated on 24/Apr/25 $$\:\:\mathrm{given}\:\mathrm{g}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}−\mathrm{2023}}{\mathrm{x}−\mathrm{1}} \\ $$$$\:\:\mathrm{find}\:\left(\mathrm{gogogogogog}\right)\left(\mathrm{2024}\right) \\ $$ Commented by kapoorshah last updated on 25/Apr/25 $${g}^{−\mathrm{1}} \left({x}\right)=\frac{{x}−\mathrm{2023}}{{x}−\mathrm{1}} \\ $$$$\:\:\:\:\:\left({g}\:{o}\:{g}\:{o}\:{g}\:{o}\:{g}\:{o}\:{g}\:{o}\:{g}\right)\left(\mathrm{2024}\right)…