Question Number 219428 by Nicholas666 last updated on 24/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}\:,\:{b},\:\in\:\mathbb{R} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\int_{\:−\infty} ^{\:\infty} \frac{\left({e}^{{iax}} −\mathrm{1}\right)\left({e}^{{ibx}} −\mathrm{1}\right)}{{x}^{\mathrm{2}} }\:{dx} \\ $$$$ \\ $$ Commented by…
Question Number 219425 by Nicholas666 last updated on 24/Apr/25 Commented by Nicholas666 last updated on 24/Apr/25 $$\:\:\:\:{ABC}\:{reguler}\:{pentagon}\: \\ $$$$\:\:\:{P},\:{Q},\:{T}\:\:\:\:\:{toricelli}'{s}\:{point}\:{of}\:{AED},{BCD},{ADE}\:\:\:\:\: \\ $$$$\:\:\:{find}\:{angle}\:{PTQ}? \\ $$ Answered by…
Question Number 219427 by Nicholas666 last updated on 24/Apr/25 Commented by mr W last updated on 24/Apr/25 $$\Rightarrow{Q}\mathrm{206879} \\ $$ Commented by Nicholas666 last updated…
Question Number 219388 by SdC355 last updated on 23/Apr/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{sin}^{\mathrm{2}} \left({u}\right)}{{u}^{\mathrm{2}} }\:\mathrm{d}{u}={I} \\ $$$${I}\left({t}\right)=\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{sin}^{\mathrm{2}} \left({u}\right)}{{u}^{\mathrm{2}} }{e}^{−{ut}} \mathrm{d}{u}=\int_{\mathrm{0}} ^{\:\infty} \:\:\:\frac{\mathrm{1}}{{u}}\centerdot\frac{\mathrm{sin}^{\mathrm{2}} \left({u}\right)}{{u}}{e}^{−{ut}} \mathrm{d}{u}=…
Question Number 219384 by mnjuly1970 last updated on 23/Apr/25 Answered by SdC355 last updated on 24/Apr/25 $$\int\:\:\:\frac{\mathrm{d}{x}}{\:\sqrt{{x}}}\:\mathrm{cos}^{\mathrm{3}} \left({x}\right)\mathrm{sin}\left({x}\right)={I} \\ $$$$\int\:\:\:\frac{\mathrm{d}{x}}{\:{x}}\:\sqrt{{x}}\mathrm{cos}^{\mathrm{3}} \left({x}\right)\mathrm{sin}\left({x}\right)=\int\:\:\:\frac{\mathrm{d}{x}}{{x}}\:\sqrt{{x}}\mathrm{cos}^{\mathrm{2}} \left({x}\right)\mathrm{cos}\left({x}\right)\mathrm{sin}\left({x}\right) \\ $$$$\int\:\:\frac{\mathrm{d}{x}}{\:\mathrm{2}{x}}\:\sqrt{{x}}\mathrm{cos}^{\mathrm{2}} \left({x}\right)\mathrm{sin}\left(\mathrm{2}{x}\right)=\int\:\:\mathrm{d}{x}\:\frac{{e}^{−{xt}}…
Question Number 219323 by SdC355 last updated on 23/Apr/25 $${f}\left({s}\right)=\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int\:\:{e}^{−\boldsymbol{{i}}{t}\left({s}−\alpha\right)} \:\mathrm{d}{t}\: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \int_{−\infty} ^{\:+\infty} \:\:{e}^{−\boldsymbol{{i}}{t}\left({s}−\alpha\right)} {e}^{−{sp}} \mathrm{d}{t}\mathrm{d}{s}=? \\ $$ Terms of Service Privacy…
Question Number 219316 by Nicholas666 last updated on 23/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{Prove}; \\ $$$$\:\:\:\:\:\:\:\underset{\:\mathrm{0}} {\int}^{\:\infty} \frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}^{\lfloor\boldsymbol{{x}}\rfloor} } \:+\:\left\{{x}\right\}}\:{dx}\:=\:{ln}\mathrm{2}\:\:\: \\ $$ Answered by vnm last updated…
Question Number 219318 by ea last updated on 23/Apr/25 Answered by mr W last updated on 23/Apr/25 Commented by ea last updated on 23/Apr/25 Sir, this is perfect, but I will appreciate if you can provide detailed explanation! showing some workings would be appreciated!…
Question Number 219377 by golsendro last updated on 23/Apr/25 $$\:\mathrm{If}\:\left(\left(\mathrm{fog}\right)^{−\mathrm{1}} \mathrm{of}\right)\left(\mathrm{x}\right)=\:\mathrm{3x}−\mathrm{8} \\ $$$$\:\mathrm{find}\:\mathrm{g}\left(\mathrm{5}\right). \\ $$ Answered by Hanuda354 last updated on 23/Apr/25 $${g}^{−\mathrm{1}} \left({x}\right)\:=\:\mathrm{3}{x}−\mathrm{8} \\…
Question Number 219372 by Nicholas666 last updated on 23/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com