Menu Close

Author: Tinku Tara

is-k-J-k-k-l-0-1-l-l-l-k-2-2l-l-0-k-1-l-l-l-k-2-2l-k-

Question Number 219359 by SdC355 last updated on 23/Apr/25 $$\mathrm{is}\:\underset{{k}=−\infty} {\overset{\infty} {\sum}}\:{J}_{\nu} \left({k}\right)= \\ $$$$\underset{{k}=−\infty} {\overset{\infty} {\sum}}\:\underset{{l}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{l}} }{{l}!\left({l}+\nu\right)!}\left(\frac{{k}}{\mathrm{2}}\right)^{\mathrm{2}{l}+\nu} =\underset{{l}=\mathrm{0}} {\overset{\infty} {\sum}}\:\underset{{k}=−\infty} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{l}}…

0-sin-z-z-e-zt-dz-

Question Number 219355 by SdC355 last updated on 23/Apr/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{sin}\left({z}\right)}{{z}}{e}^{−{zt}} \mathrm{d}{z}=?? \\ $$ Answered by breniam last updated on 23/Apr/25 $$={I}\left({t}\right) \\ $$$${I}'\left({t}\right)=\underset{{t}_{\mathrm{0}}…

1-cos-u-sin-u-1-du-

Question Number 219350 by SdC355 last updated on 23/Apr/25 $$\int\:\:\frac{\mathrm{1}}{\mathrm{cos}\left({u}\right)+\mathrm{sin}\left({u}\right)+\mathrm{1}}\:\mathrm{d}{u}=?? \\ $$ Answered by vnm last updated on 23/Apr/25 $$\int\frac{\mathrm{1}}{\mathrm{2cos}^{\mathrm{2}} \frac{{u}}{\mathrm{2}}+\mathrm{2sin}\frac{{u}}{\mathrm{2}}\mathrm{cos}\frac{{u}}{\mathrm{2}}}\mathrm{d}{u}= \\ $$$$\int\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{tan}\frac{{u}}{\mathrm{2}}\right)\centerdot\mathrm{2cos}^{\mathrm{2}} \frac{{u}}{\mathrm{2}}}\mathrm{d}{u}= \\…

0-cos-z-z-2-1-dz-

Question Number 219344 by SdC355 last updated on 23/Apr/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{cos}\left({z}\right)}{\:\sqrt{{z}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{d}{z}=?? \\ $$ Answered by Nicholas666 last updated on 23/Apr/25 $${K}_{\mathrm{0}} \left(\mathrm{1}\right) \\…

x-x-2-y-2-da-

Question Number 219345 by SdC355 last updated on 23/Apr/25 $$\int_{−\infty} ^{+\infty} \int_{−\infty} ^{\:+\infty} \:\:−\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }}\:\mathrm{da}=???\:\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com