Menu Close

Author: Tinku Tara

prove-Gauss-curvature-K-intrinsic-it-s-the-same-thing-as-saying-Show-that-Gauss-curvature-K-can-only-consist-of-First-Fundamental-Form-and-it-s-Derivatives-

Question Number 225581 by Lara2440 last updated on 03/Nov/25 $$\mathrm{prove} \\ $$$$\mathrm{Gauss}\:\mathrm{curvature}\:{K}\:\mathrm{intrinsic} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{same}\:\mathrm{thing}\:\mathrm{as}\:\mathrm{saying}; \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{Gauss}\:\mathrm{curvature}\:{K}\:\mathrm{can}\:\mathrm{only}\:\mathrm{consist}\:\mathrm{of} \\ $$$$\mathrm{First}\:\mathrm{Fundamental}\:\mathrm{Form}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{Derivatives}. \\ $$ Terms of Service Privacy Policy…

A-farmer-produces-seeds-in-packets-for-sale-The-probability-that-a-seed-selected-at-random-will-grow-is-0-8-If-there-are-20-seeds-what-is-the-probability-that-less-than-2-will-not-grow-

Question Number 225568 by necx122 last updated on 03/Nov/25 $${A}\:{farmer}\:{produces}\:{seeds}\:{in}\:{packets} \\ $$$${for}\:{sale}.\:{The}\:{probability}\:{that}\:{a}\:{seed} \\ $$$${selected}\:{at}\:{random}\:{will}\:{grow}\:{is}\:\mathrm{0}.\mathrm{8}. \\ $$$${If}\:{there}\:{are}\:\mathrm{20}\:{seeds},\:{what}\:{is}\:{the} \\ $$$${probability}\:{that}\:{less}\:{than}\:\mathrm{2}\:{will}\:{not} \\ $$$${grow}? \\ $$ Commented by necx122…

Question-225497

Question Number 225497 by gregori last updated on 31/Oct/25 Answered by Simurdiera last updated on 01/Nov/25 $$\begin{array}{|c|}{\mathrm{11}}\\\hline\end{array}\begin{cases}{{x}\:+\:{y}\:+\:\sqrt{{xy}}\:=\:\mathrm{28}\:\:\:\:\:\ldots\left(\mathrm{I}\right)}\\{{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{xy}\:=\:\mathrm{336}\:\:\:\:\:\ldots\left(\mathrm{II}\right)}\end{cases} \\ $$$$\mathrm{En}\:\left(\mathrm{II}\right),\:\mathrm{sumando}\:\mathrm{ceros} \\ $$$${x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{xy}\:+\:{xy}\:−\:{xy}\:=\:\mathrm{336}…

Diffenrantial-Geometry-Christoffel-symbol-first-kind-and-second-kind-and-Chritoffel-symbol-satisfy-1-2-g-l-l-ijk-i-j-k-

Question Number 225488 by Lara2440 last updated on 30/Oct/25 $$\mathrm{Diffenrantial}\:\mathrm{Geometry}…..=\wedge= \\ $$$$\mathrm{Christoffel}\:\mathrm{symbol}\: \\ $$$$\Gamma_{\sigma\mu\nu} \:\mathrm{first}\:\mathrm{kind}\:\mathrm{and}\:\Gamma_{\mu\nu} ^{\:\sigma} \:\mathrm{second}\:\mathrm{kind}… \\ $$$$\mathrm{and}\:\mathrm{Chritoffel}\:\mathrm{symbol}\:\mathrm{satisfy} \\ $$$$\Gamma_{\mu\nu} ^{\:\sigma} =\frac{\mathrm{1}}{\mathrm{2}}{g}^{\sigma{l}} \Gamma_{{l}\mu\nu} \\…