Question Number 218970 by Nicholas666 last updated on 17/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2},\mathrm{12},\mathrm{18},\mathrm{48},\mathrm{50},….. \\ $$$$ \\ $$ Answered by Frix last updated on 17/Apr/25 $$\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{42}\:\mathrm{as}\:\mathrm{always}. \\…
Question Number 218907 by malwan last updated on 17/Apr/25 $$\:_{\mathrm{0}} \int^{\:\mathrm{45}} {arctan}\left(\frac{\mathrm{1}+{tan}\:{x}}{\:\sqrt{\mathrm{2}}}\right){dx}\:=\:? \\ $$ Commented by mr W last updated on 17/Apr/25 $${you}\:{should}\:{make}\:{clear}\:{what}\:{you} \\ $$$${mean}\:{with}\:\int_{\mathrm{0}}…
Question Number 218896 by Nicholas666 last updated on 17/Apr/25 $$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{prove}}; \\ $$$$\:\mid\int\int\int_{\left[\mathrm{0},\infty\right]^{\mathrm{3}} } \boldsymbol{{f}}\frac{\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{x}}\right)\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{y}}\right)\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{z}}\right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} }\mid\leqslant\boldsymbol{{C}}\left(\int\int\int_{\mathbb{R}_{+} ^{\mathrm{3}} } \mid\boldsymbol{{f}}\mid\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}}…
Question Number 218956 by Spillover last updated on 17/Apr/25 Answered by mr W last updated on 17/Apr/25 Commented by mr W last updated on 18/Apr/25…
Question Number 218957 by Spillover last updated on 17/Apr/25 Answered by mr W last updated on 17/Apr/25 Commented by mr W last updated on 17/Apr/25…
Question Number 218952 by Spillover last updated on 17/Apr/25 Commented by MathematicalUser2357 last updated on 17/Apr/25 $$\mathrm{What}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{function}\:\mathrm{is}\:\mathrm{Ti}_{\mathrm{2}} ???\:\mathrm{Can}\:\mathrm{someone}\:\mathrm{help}\:\mathrm{me}\:\mathrm{before}\:\mathrm{I}\:\mathrm{eat}\:\mathrm{that}\:\mathrm{question}??? \\ $$ Commented by SdC355 last updated…
Question Number 218953 by Spillover last updated on 17/Apr/25 Answered by mr W last updated on 18/Apr/25 $${eqn}.\:{of}\:{AC}: \\ $$$$\frac{{x}}{\mathrm{20}}+\frac{{y}}{\mathrm{15}}=\mathrm{1} \\ $$$${G}\left(\frac{\mathrm{20}}{\mathrm{3}},\:\frac{\mathrm{15}}{\mathrm{3}}\right) \\ $$$${r}=\frac{\mid\frac{\mathrm{1}}{\mathrm{20}}×\frac{\mathrm{20}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{15}}×\frac{\mathrm{15}}{\mathrm{3}}−\mathrm{1}\mid}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{20}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{15}^{\mathrm{2}}…
Question Number 218889 by Spillover last updated on 17/Apr/25 Answered by mehdee7396 last updated on 17/Apr/25 $${tanx}+{cotx}=−\mathrm{1} \\ $$$${tan}^{\mathrm{3}} +{cot}^{\mathrm{3}} {x}=\left({tanx}+{cotx}\right)^{\mathrm{3}} −\mathrm{3}\left({tanx}×{cotx}\right)\left({tanx}+{cotx}\right) \\ $$$$=−\mathrm{1}+\mathrm{3}=\mathrm{2}=\mathrm{2}{m}^{\mathrm{2}} \Rightarrow{m}=\pm\mathrm{1}…
Question Number 218954 by Spillover last updated on 17/Apr/25 Commented by AntonCWX8 last updated on 17/Apr/25 $${All}\:{are}\:{from}\:{Facebook}… \\ $$ Answered by Spillover last updated on…
Question Number 218890 by Spillover last updated on 17/Apr/25 Answered by mr W last updated on 17/Apr/25 $$\frac{\mathrm{1}}{\mathrm{1}}×\frac{{BF}}{{FD}}×\frac{\mathrm{3}}{\mathrm{4}}=\mathrm{1}\:\Rightarrow\frac{{BF}}{{FD}}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Rightarrow\Delta_{{ADF}} =\frac{\mathrm{3}}{\mathrm{7}}×\Delta_{{ADB}} =\frac{\mathrm{3}}{\mathrm{7}}×\frac{\mathrm{3}×\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{27}}{\mathrm{14}} \\ $$$$\left[{CDFE}\right]=\Delta_{{ACF}} −\Delta_{{ADF}}…